「ベイズフローネットワークの公開:生成モデリングの新たなフロンティア」

ベイズフローネットワークの公開

生成モデリングは、モデルが入力データのパターンを発見することを学ぶ教師なし機械学習の一環です。この知識を活用して、モデルはオリジナルのトレーニングデータセットに関連する新しいデータを自己生成することができます。生成AIの分野では、自己回帰モデル、深層VAE、拡散モデルなど、使用されるネットワークにおいて数多くの進歩がありました。しかし、これらのモデルは連続的または離散的なデータの場合には欠点を持つ傾向があります。

研究者たちは、ベイジアンフローネットワーク(BFN)と呼ばれる新しいタイプの生成モデルを提案しました。BFNは、アリスとボブを使って考えることができます。ボブは基本的な初期分布から始めます。彼はそのパラメータをニューラルネットワークに使用して新しい「出力分布」のパラメータを取得します。アリスは計画的な方法でデータにノイズを加え、それを「送信者分布」とします。ボブは出力分布と同じノイズを組み合わせて「受信者分布」を作成します。彼は出力分布に基づいてデータのすべての可能な値に対して仮想的な送信者分布を結合し、それらの確率に従って考慮します。

アリスは送信者分布からサンプルをボブに送ります。ボブはこのサンプルに基づいてベイジアンの規則に従って初期分布を更新します。初期分布が各データ変数を個別にモデル化している場合、更新は容易に行われます。ボブは複数のステップでこのプロセスを繰り返します。最終的に、彼の予測は十分に正確になり、アリスはノイズのないデータを送信することができます。

次に説明されたプロセスは、nステップの損失関数を作成し、無限のステップ数を考慮することで連続時間に拡張することもできます。連続時間では、ベイジアンの更新はデータからネットワークへの情報のベイジアンフローとなります。連続時間の損失を使用してトレーニングされたBFNは、推論とサンプリングの際に任意の数の離散ステップで実行でき、ステップ数が増えるにつれて性能が向上します。

連続データの場合、BFNは最も関連性が高く、変分拡散モデルと非常に似た連続時間の損失関数を持っています。この場合の主な違いは、BFNではネットワークの入力が変分拡散や他の連続拡散モデルよりもはるかにノイズが少ないことです。これは一般的に、BFNの生成プロセスが固定された事前分布のパラメータから始まる一方、拡散モデルの生成プロセスは純粋なノイズから始まるためです。

研究者たちは、BFNのフレームワークを連続的な、離散的な、離散化されたデータに適用することを提案しました。実験結果は、CIFAR-10(32×32の8ビットカラー画像)、動的に2値化されたMNIST(28×28の2値化された手書き数字の画像)、およびtext8(長さ256の文字列シーケンス、サイズ27のアルファベット)を対象に行われ、BFNがすべてのベンチマークで優れた性能を発揮しました。この研究は、生成モデリングにおけるBFNへの新たな視点を提供し、この分野でのさらなる可能性を開拓しました。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「ReactJSとChatGPT:ウェブアプリに対話型AIを構築する方法」

Kono burogu de wa, ChatGPT o ReactJS apurikēshon ni tōgō suru koto no kanōsei to riten, soshite sore o okonau hōhō ni...

機械学習

「FlexGenに会おう:GPUメモリが限られている場合に大規模な言語モデル(LLM)を実行するための高スループットな生成エンジン」

大規模言語モデル(LLM)は最近、さまざまなタスクで印象的なパフォーマンスを発揮しています。生成型LLMの推論は以前にない...

AI研究

新しい人工知能(AI)の研究アプローチは、統計的な視点からアルゴリズム学習の問題として、プロンプトベースのコンテキスト学習を提示します

インコンテキスト学習は、最近のパラダイムであり、大規模言語モデル(LLM)がテストインスタンスと数少ないトレーニング例を...

データサイエンス

「機械学習アルゴリズムとGAN」

「GANとさまざまな機械学習アルゴリズムについて詳しく学びましょう」(GANとさまざまなきかいがくしゅうアルゴリズムについて...

機械学習

大規模言語モデルの探索 -Part 1

この記事は主に自己学習のために書かれていますそのため、広範囲かつ深い内容です興味のあるセクションをスキップしたり、自...

データサイエンス

生成AI:シームレスなデータ転送のための倫理的かつ創造的なイノベーション

この記事は、データエンリッチメントにおける生成AIの変革的な影響について掘り下げ、より正確な洞察と意思決定を促進します