「ベイズフローネットワークの公開:生成モデリングの新たなフロンティア」

ベイズフローネットワークの公開

生成モデリングは、モデルが入力データのパターンを発見することを学ぶ教師なし機械学習の一環です。この知識を活用して、モデルはオリジナルのトレーニングデータセットに関連する新しいデータを自己生成することができます。生成AIの分野では、自己回帰モデル、深層VAE、拡散モデルなど、使用されるネットワークにおいて数多くの進歩がありました。しかし、これらのモデルは連続的または離散的なデータの場合には欠点を持つ傾向があります。

研究者たちは、ベイジアンフローネットワーク(BFN)と呼ばれる新しいタイプの生成モデルを提案しました。BFNは、アリスとボブを使って考えることができます。ボブは基本的な初期分布から始めます。彼はそのパラメータをニューラルネットワークに使用して新しい「出力分布」のパラメータを取得します。アリスは計画的な方法でデータにノイズを加え、それを「送信者分布」とします。ボブは出力分布と同じノイズを組み合わせて「受信者分布」を作成します。彼は出力分布に基づいてデータのすべての可能な値に対して仮想的な送信者分布を結合し、それらの確率に従って考慮します。

アリスは送信者分布からサンプルをボブに送ります。ボブはこのサンプルに基づいてベイジアンの規則に従って初期分布を更新します。初期分布が各データ変数を個別にモデル化している場合、更新は容易に行われます。ボブは複数のステップでこのプロセスを繰り返します。最終的に、彼の予測は十分に正確になり、アリスはノイズのないデータを送信することができます。

次に説明されたプロセスは、nステップの損失関数を作成し、無限のステップ数を考慮することで連続時間に拡張することもできます。連続時間では、ベイジアンの更新はデータからネットワークへの情報のベイジアンフローとなります。連続時間の損失を使用してトレーニングされたBFNは、推論とサンプリングの際に任意の数の離散ステップで実行でき、ステップ数が増えるにつれて性能が向上します。

連続データの場合、BFNは最も関連性が高く、変分拡散モデルと非常に似た連続時間の損失関数を持っています。この場合の主な違いは、BFNではネットワークの入力が変分拡散や他の連続拡散モデルよりもはるかにノイズが少ないことです。これは一般的に、BFNの生成プロセスが固定された事前分布のパラメータから始まる一方、拡散モデルの生成プロセスは純粋なノイズから始まるためです。

研究者たちは、BFNのフレームワークを連続的な、離散的な、離散化されたデータに適用することを提案しました。実験結果は、CIFAR-10(32×32の8ビットカラー画像)、動的に2値化されたMNIST(28×28の2値化された手書き数字の画像)、およびtext8(長さ256の文字列シーケンス、サイズ27のアルファベット)を対象に行われ、BFNがすべてのベンチマークで優れた性能を発揮しました。この研究は、生成モデリングにおけるBFNへの新たな視点を提供し、この分野でのさらなる可能性を開拓しました。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

PythonでのChatGPT統合:AI会話の力を解き放つ

このブログでは、PythonとのChatGPTの統合について掘り下げ、さまざまなアプリケーションにChatGPTをPythonと統合する方法に...

データサイエンス

チャットGPTの潜在能力を引き出すためのプロンプトエンジニアリングのマスタリング

プロンプトエンジニアリングは、ChatGPTやその他の大規模言語モデルのおかげで、風のように私たちの生活の一部にすぐになりま...

人工知能

「IntelのOpenVINOツールキットを使用したAI最適化と展開のマスタリング」

イントロダクション 人間の労働力を置き換えるAIの影響が増しているため、私たちはほぼ毎日AIについて話題にしています。AIを...

人工知能

「AIツールを使用してマイクロサービス開発の生産性を向上させる」

「AIツールをマイクロサービス開発に利用することで、コーディングプロセスが効率化され、特に大規模なデータモデルにおいて...

機械学習

「機械に学習させ、そして彼らが私たちに再学習をさせる:AIの構築の再帰的性質」

「建築デザインの選択が集団の規範にどのように影響を与えるかを探索し、トレーニング技術がAIシステムを形作り、それが再帰...

機械学習

「オーディオ機械学習入門」

「現在、音声音声認識システムを開発しているため、それに関する基礎知識を再確認する必要がありましたこの記事はその結果で...