「フレームワークによりロボットは連続した順序で対話的なタスクを実行できる」

フレームワークによりロボットはタスクを実行できる

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

インタラクティブナビゲーションは、ロボットが目標地点に到達するために途中の障害物と対話しながら進む必要があるため、学習が最も困難なタスクとされています。 ¶ クレジット:ジョージア工科大学研究

ジョージア工科大学の博士課程の学生であるNiranjan Kumarが開発したフレームワークにより、四足歩行ロボットはモーションを再学習することなく、徐々に複雑なタスクを実行することができます。

カスケードコンポジショナルリジドラーニング(CCRL)フレームワークは、ロボットが学習する新しいスキルごとに追加され、より複雑なスキルを達成するためにアクセスされます。

このフレームワークは、ロボットがエネルギーを伝達して重いドアを開くことを示すためにデモンストレーションされました。

現在、ロボットはCCRLを使用して10のスキルを学習および展開することができます。

Kumar氏は、「スキルを追加するたびにトレーニングにはより長い時間がかかります。なぜなら、ポリシーはこれらのスキルをさまざまな状況でどのように組み込むかを理解する必要があるからです。しかし理論的には、十分なパワフルなコンピュータを持っていれば、スキルを無制限に追加することができます」と述べました。ジョージア工科大学からの記事を参照してください。

抄録の著作権は2023年、SmithBucklin、ワシントンD.C.、アメリカに帰属します

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「機械学習に人間のミスを組み込む」

科学者たちは、機械学習システムに不確実性を取り入れています

コンピュータサイエンス

「A.I.があなたについて嘘をついた場合、あなたは何ができるのか?」

「人々は、技術が彼らについての誤りを作り出し、広める際にほとんど保護や救済手段がありません」

コンピュータサイエンス

「企業が職場のAIを求める中、テック企業が急いで提供する」

アマゾン、ボックス、セールスフォース、オラクルなどの企業は最近、職場の効率と生産性を向上させるためのAI関連製品を提供...

AIニュース

ChatGPTは自己を規制するための法律を作成する

コスタリカは、人工知能(AI)の規制において興味深い一歩を踏み出しました。法的な専門知識の源泉として予想外の存在であるC...

機械学習

「トップAIオーディオエンハンサー(2023年)」

プロフェッショナルやオーディオファイルは、AIパワードのオーディオエンハンサーソフトウェアによって最高の音質を得ること...

データサイエンス

ワシントン大学とプリンストン大学の研究者が、事前学習データ検出データセットWIKIMIAと新しい機械学習アプローチMIN-K% PROBを発表しました

“`html 大規模な言語モデル(LLMs)は、大量のテキストデータを処理できる強力なモデルです。彼らは数百ギガバイトから...