「フレームワークによりロボットは連続した順序で対話的なタスクを実行できる」

フレームワークによりロボットはタスクを実行できる

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

インタラクティブナビゲーションは、ロボットが目標地点に到達するために途中の障害物と対話しながら進む必要があるため、学習が最も困難なタスクとされています。 ¶ クレジット:ジョージア工科大学研究

ジョージア工科大学の博士課程の学生であるNiranjan Kumarが開発したフレームワークにより、四足歩行ロボットはモーションを再学習することなく、徐々に複雑なタスクを実行することができます。

カスケードコンポジショナルリジドラーニング(CCRL)フレームワークは、ロボットが学習する新しいスキルごとに追加され、より複雑なスキルを達成するためにアクセスされます。

このフレームワークは、ロボットがエネルギーを伝達して重いドアを開くことを示すためにデモンストレーションされました。

現在、ロボットはCCRLを使用して10のスキルを学習および展開することができます。

Kumar氏は、「スキルを追加するたびにトレーニングにはより長い時間がかかります。なぜなら、ポリシーはこれらのスキルをさまざまな状況でどのように組み込むかを理解する必要があるからです。しかし理論的には、十分なパワフルなコンピュータを持っていれば、スキルを無制限に追加することができます」と述べました。ジョージア工科大学からの記事を参照してください。

抄録の著作権は2023年、SmithBucklin、ワシントンD.C.、アメリカに帰属します

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

スタンフォードの研究者たちは、「EquivAct」というロボット学習における画期的な提案を行いましたこの提案は、異なる規模や方向でのタスクを一般化するためのものです

人間は、標準的なオブジェクトでタスクを完了する方法のわずかな例だけを与えられた場合でも、対象物の視覚的または物理的属...

AI研究

手首に装着するモバイルアルコールセンサーは、アルコール使用研究を促進する可能性があります

ペンシルバニア州立大学とノースカロライナ大学の科学者たちは、より目立たない形でアルコール摂取に関するデータを収集する...

AIニュース

アマゾンがベッドロックを展開:AIモデルの評価と人間のベンチマーキング

開発において、Amazon Bedrockは、特定のニーズに合わせて選択し、比較し、最適なファウンデーションモデル(FM)を選択する...

AI研究

コンピュータビジョンシステムは、画像認識と生成を結びつけたものです

MAGEは、通常は別々に訓練される画像生成と認識の2つの主要なタスクを1つのシステムに統合します

機械学習

「2Dから3Dへ:アラインドジオメトリックプライオリティを用いたテキストから3D生成の一貫性向上」

2D画像を3Dオブジェクトに変換することは、テキストから3D生成のために困難なタスクです。これは、2D拡散モデルがビューに関...