「フレームワークによりロボットは連続した順序で対話的なタスクを実行できる」

フレームワークによりロボットはタスクを実行できる

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

インタラクティブナビゲーションは、ロボットが目標地点に到達するために途中の障害物と対話しながら進む必要があるため、学習が最も困難なタスクとされています。 ¶ クレジット:ジョージア工科大学研究

ジョージア工科大学の博士課程の学生であるNiranjan Kumarが開発したフレームワークにより、四足歩行ロボットはモーションを再学習することなく、徐々に複雑なタスクを実行することができます。

カスケードコンポジショナルリジドラーニング(CCRL)フレームワークは、ロボットが学習する新しいスキルごとに追加され、より複雑なスキルを達成するためにアクセスされます。

このフレームワークは、ロボットがエネルギーを伝達して重いドアを開くことを示すためにデモンストレーションされました。

現在、ロボットはCCRLを使用して10のスキルを学習および展開することができます。

Kumar氏は、「スキルを追加するたびにトレーニングにはより長い時間がかかります。なぜなら、ポリシーはこれらのスキルをさまざまな状況でどのように組み込むかを理解する必要があるからです。しかし理論的には、十分なパワフルなコンピュータを持っていれば、スキルを無制限に追加することができます」と述べました。ジョージア工科大学からの記事を参照してください。

抄録の著作権は2023年、SmithBucklin、ワシントンD.C.、アメリカに帰属します

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「生成AIを使って、あらゆる感情に対応するWhatsAppステッカーを作成する」

未来に向けて大きな進歩を遂げる中、WhatsAppの親会社であるMetaは、人工知能(AI)の世界に飛び込んでいます。最新の話題に...

AI研究

新しいCMUとMetaによるAI研究、PyNeRFの導入:スケールに意識したグリッドベースのレンダリングにおけるニューラル輝度場の進化

ニューラル・ラディアンス・フィールド(NeRF)は、シーン再構成時のスケールの変動とエイリアシングのアーティファクトを減...

機械学習

宇宙における私たちの位置を理解する

マーティン・ルーサー・キングJr.奨学生であるブライアン・ノードは、機械を訓練して宇宙を探索し、研究における公正を求めて...

コンピュータサイエンス

「日本のSLIM月面着陸船が変形ボールロボットを搭載しています」

先週、日本の宇宙航空研究開発機構は、小型の球状の月面探査機を搭載したスマートランダーを打ち上げました

機械学習

このAIの論文は、純粋なゼロショットの設定で、タスクの適応と未知のタスクや環境への一般化に優れたCLIN(Continuous Learning Language Agent)を紹介しています

人工知能の持続的な進化により、繊細な言語ベースのエージェントが複雑なタスクを訓練や明示的なデモなしで実行できるように...

人工知能

AIに関する最高のコースは、YouTubeのプレイリストを持つ大学から提供されています

「信頼できる大学のYouTubeプレイリストで、新しいキャリアをスタートさせるか、現在のキャリアを発展させましょう!」