ヒストグラムに対する3つの最良の(しばしばより良い)代替方法

ヒストグラムの最良の代替方法3つ

ヒストグラムの最も危険な落とし穴を避ける方法

Leonardo AIによるイメージ

ビニングバイアス、ヒストグラムの最大の欠点

ヒストグラムは、データサイエンティストとしての旅立ちにおいて、おそらく最初に使用したプロットです。彼らは直感的で、分布の形状を理解するのに簡単なプロットです。

しかし、旅を進めるにつれて、ヒストグラムがそんなに理想的ではないことがわかるでしょう。ヒストグラムは値をビンと呼ばれる区間にグループ化し、ヒストグラム内の各ビンの高さはそのビン内の点の数を示します。以下の例を考えてみましょう:

著者によるイメージ

このヒストグラムから、ほとんどのスコアが60から80の間にあることがすぐにわかります。では、ビンの数を10から20に変更した場合はどうなるでしょう:

著者によるイメージ

それでも、前の傾向は明らかです。では、今度は20から40に変更してみましょう:

著者によるイメージ

これで、分布が見かけほどスムーズではないことがわかります。40のビンでは、40、62、68、80周辺に小さなピークが見られます。したがって、ビンの数は実際には分布に関する重要な洞察を隠す可能性があります。

ただし、ビンの数をあまりにも変更しすぎると、ランダムなノイズが導入されて重要な発見のように見えるかもしれません。これがヒストグラムの最大の欠点であるビニングバイアスです。

ビニングバイアスは、プロットのためのビンの数を変更すると同じデータの異なる表現が得られるヒストグラムの落とし穴です。

後のセクションでは、ビニングバイアスを回避し、分布を比較するためにより良い結果を提供する3つのヒストグラムの代替手段を見ていきます。

離散データと連続データの復習

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「aiOlaのCEO兼共同創設者、アミール・ハラマティによるインタビューシリーズ」

アミール・ハラマティは、aiOlaのCEO兼共同創業者であり、スピーチを作業可能にし、どこでも完全な正確さで業界固有のプロセ...

人工知能

『DeepHowのCEO兼共同創業者、サム・ジェン氏によるインタビューシリーズ』

ディープハウのCEO兼共同創設者であるサム・ジェンは、著名な投資家から支持される急速に進化するスタートアップを率いていま...

AIニュース

Q&A:ブラジルの政治、アマゾンの人権、AIについてのGabriela Sá Pessoaの見解

ブラジルの社会正義のジャーナリストは、MIT国際研究センターのフェローです

人工知能

ファイデムのチーフ・プロダクト・オフィサー、アルパー・テキン-インタビューシリーズ

アルパー・テキンは、FindemというAI人材の獲得と管理プラットフォームの最高製品責任者(CPO)ですFindemのTalent Data Clou...

機械学習

もし芸術が私たちの人間性を表現する方法であるなら、人工知能はどこに適合するのでしょうか?

MITのポストドクターであるジヴ・エプスタイン氏(SM '19、PhD '23)は、芸術やその他のメディアを作成するために生成的AIを...

人工知能

「ElaiのCEO&共同創業者、Vitalii Romanchenkoについてのインタビューシリーズ」

ヴィタリー・ロマンチェンコは、ElaiのCEO兼共同創設者であり、マイク、カメラ、俳優、スタジオの必要なく、個人が一流のビデ...