コンピュータ科学者がAIを活用して危険なアプリを特定する

コンピュータ科学者がAIを活用して危険なアプリを特定する' can be condensed to 'コンピュータ科学者がAIで危険なアプリを特定'.

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

The App Danger Project is a searchable website that provides guidance on the safety of social networking apps. ¶ Credit: Tony Luong / The New York Times

マサチューセッツ大学アマースト校のブライアン・レヴィンと12人のコンピュータサイエンティストは、人工知能(AI)を使用した顧客のソーシャルネットワーキングアプリのレビューを評価する計算モデルを開発しました。これは、その安全性の文脈的指標を提供します。

研究者たちは、アプリ危険プロジェクトのウェブサイトを構築し、性的加害者に関するユーザーレビューの数を数え、否定的に評価されたアプリを評価しました。プロジェクトは、2019年以来の32,000件のレビューのうち、176件のレビューで性的虐待の報告があると報告しました。

レヴィンは、この無料のリソースがCommon Sense Mediaなどの子供向けアプリの適切さをチェックするサービスと相補的になることを想定しています。それは、ユーザーを積極的に監視しないアプリを特定します。

ニューヨーク・タイムズの記事全文を表示するには、有料の購読が必要です

抄録の著作権は、2023年にSmithBucklin、ワシントンD.C.、アメリカ合衆国で発行されたものです

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

Google AIは、埋め込みモデルのスケーラビリティの利点と、クロスアテンションモデルの品質を効果的に組み合わせた新しいクラスタリングアルゴリズムを紹介します

画像: クラスタリングは、データマイニングや教師なし機械学習の領域で基本的かつ広範な課題として用いられています。その目...

機械学習

このAI論文では、アマゾンの最新の機械学習に関する情報が大規模言語モデルのバグコードについて明らかにされています

プログラミングは複雑であり、エラーのないコードを書くことは時には難しいです。コードの大規模言語モデル(Code-LLMs)はコ...

AI研究

CMUとプリンストンの研究者がマンバを発表:多様なモードのディープラーニングアプリケーションにおいてトランスフォーマーの効率を超えるSSMアーキテクチャの画期的な進展

現代の機械学習において、ファウンデーションモデルは、大量のデータで事前に学習され、その後に下流のタスクに対して改変さ...

人工知能

生成AI倫理' (Seisei AI Rinri)

生成型人工知能(AI)に関する大騒ぎがある中で、この変革的な技術を責任を持って実装する方法について、未解決の問題が増え...

データサイエンス

MusicGenを再構築:MetaのAI音楽における地下進化

2023年2月、Googleは彼らの生成音楽AI MusicLMで波風を立てましたその時点で、二つのことが明確になりました 多くの人が次の...