機械学習におけるクラスタリングの評価

クラスタリング評価の機械学習

PYTHON | データ | 機械学習

なぜ、どのように、そして何のためのガイド

Nareeta Martin氏の写真、Unsplashより

はじめに

クラスタリングは、常に私の注意を引くトピックの一つでした。特に、機械学習全体に初めて入り込んだ時には、教師なしのクラスタリングはいつも魅力的でした。

簡単に言えば、クラスタリングは、機械学習の輝く鎧の下に隠れた騎士のようなものです。この教師なし学習の形式は、似たデータポイントをグループ化することを目指します。

社交の場で、誰もが見知らぬ人であると想像してみてください。

あなたは、群衆をどのように解読しますか?

たとえば、笑い声に共感する人、サッカーの熱狂者との会話に夢中になっている人、文学的な議論に夢中になっているグループなど、共有の特性に基づいて個人をグループ化することでしょう。それがクラスタリングの要点です!

「なぜそれが関連するのか疑問に思うかもしれません。」

クラスタリングには多くの応用があります。

  • 顧客セグメンテーション — ビジネスが買い物パターンに基づいて顧客をカテゴリ分けし、マーケティングアプローチを調整するのに役立ちます。
  • 異常検知 — 銀行取引などの怪しいデータポイントを特定します。
  • 最適なリソースの利用 — コンピューティングクラスタを構成することによって。

ただし、注意が必要です。

クラスタリングの取り組みが成功するかどうかをどのように確認しますか?

クラスタリングソリューションを効率的に評価する方法はありますか?

ここで、堅牢な評価方法の要件が浮かび上がります。

堅牢な評価手法がなければ、紙上では有望に見えるモデルでも、実際のシナリオでは劇的に性能が低下する可能性があります。

この記事では、2つの有名なクラスタリング評価方法であるシルエットスコア密度ベースのクラスタリング検証(DBCV)について調査します。それらの強み、制限、および使用の理想的なシナリオについて掘り下げます。

クラスタリング評価の重要性

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

2023年にフォローすべきAI YouTuberトップ15選

人工知能は現在、さまざまな分野で指数関数的な成長を遂げています。その拡大により、この領域は学び、マスターするための数...

人工知能

エッセンシャルコンプレクシティは、開発者のユニークセリングポイントです

AIは、私たちが本質的な複雑さを理解するのを助けることができます私たちがそれをオートパイロットで最も偶発的な複雑さを処...

人工知能

「人工知能対応IoTシステムのための継続的インテグレーションと継続的デプロイメント(CI/CD)」

CI/CDは、IoTにおけるAIにとって重要ですバージョン管理、テスト、コンテナ、モニタリング、セキュリティは、信頼性のある展...

AIテクノロジー

ChatGPTが1歳になりました:バイラルなモバイルアプリと数百万ドルの収益!

2023年は盛りだくさんの一年でした。ChatGPTが1年を迎え、我々の日常生活における人工知能の境界を再定義してきました。ChatG...

機械学習

「ONNXフレームワークによるモデルの相互運用性と効率の向上」

ONNXは、異なるプラットフォーム間でのディープラーニングモデルの簡単な転送と実行を可能にするオープンソースのフレームワ...

機械学習

Deep learning論文の数学をPyTorchで効率的に実装する:SimCLR コントラスティブロス

PyTorch / TensorFlow のコードに深層学習論文の数学を実装することは、深層学習モデルの数学的な理解を深め、高度なプログラ...