機械学習におけるクラスタリングの評価

クラスタリング評価の機械学習

PYTHON | データ | 機械学習

なぜ、どのように、そして何のためのガイド

Nareeta Martin氏の写真、Unsplashより

はじめに

クラスタリングは、常に私の注意を引くトピックの一つでした。特に、機械学習全体に初めて入り込んだ時には、教師なしのクラスタリングはいつも魅力的でした。

簡単に言えば、クラスタリングは、機械学習の輝く鎧の下に隠れた騎士のようなものです。この教師なし学習の形式は、似たデータポイントをグループ化することを目指します。

社交の場で、誰もが見知らぬ人であると想像してみてください。

あなたは、群衆をどのように解読しますか?

たとえば、笑い声に共感する人、サッカーの熱狂者との会話に夢中になっている人、文学的な議論に夢中になっているグループなど、共有の特性に基づいて個人をグループ化することでしょう。それがクラスタリングの要点です!

「なぜそれが関連するのか疑問に思うかもしれません。」

クラスタリングには多くの応用があります。

  • 顧客セグメンテーション — ビジネスが買い物パターンに基づいて顧客をカテゴリ分けし、マーケティングアプローチを調整するのに役立ちます。
  • 異常検知 — 銀行取引などの怪しいデータポイントを特定します。
  • 最適なリソースの利用 — コンピューティングクラスタを構成することによって。

ただし、注意が必要です。

クラスタリングの取り組みが成功するかどうかをどのように確認しますか?

クラスタリングソリューションを効率的に評価する方法はありますか?

ここで、堅牢な評価方法の要件が浮かび上がります。

堅牢な評価手法がなければ、紙上では有望に見えるモデルでも、実際のシナリオでは劇的に性能が低下する可能性があります。

この記事では、2つの有名なクラスタリング評価方法であるシルエットスコア密度ベースのクラスタリング検証(DBCV)について調査します。それらの強み、制限、および使用の理想的なシナリオについて掘り下げます。

クラスタリング評価の重要性

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「仕事を守るために自動化を避ける」

自動化は怖いです私のキャリアの最初のころ、私は何かを自動化しましたが、私が去ればすぐに廃止されました人々は仕事を失う...

機械学習

「機械学習手法を用いたJava静的解析ツールレポートのトリアージに関する研究」

この研究では、最新の機械学習技術を利用して、Java静的解析ツールからの効果的な発見の選別について詳しく探求しています

機械学習

メタのボイスボックス:すべての言語を話すAI

Facebookの親会社であるMetaは画期的な開発を発表し、最新の生成型人工知能(AI)であるVoiceboxを公開しました。従来のテキ...

データサイエンス

DLノート:勾配降下法

人工ニューラルネットワーク(ANN)は、万能関数近似器です十分なデータが与えられ、適切なアーキテクチャがあり、十分な訓練...

AI研究

トヨタのAIにより、電気自動車の設計がより迅速になりました

トヨタ研究所(TRI)は、車両設計の世界で発表を行いました。彼らは、画期的な生成型人工知能(AI)技術を発表し、電気自動車...

機械学習

「ディープランゲージモデルは、コンテキストから次の単語を予測することを学ぶことで、ますます優れてきていますこれが本当に人間の脳が行っていることなのでしょうか?」

ディープラーニングは、テキスト生成、翻訳、および補完の分野で最近大きな進歩を遂げています。周囲の文脈から単語を予測す...