キャンドル:Rustでのミニマリストな機械学習

キャンドル:Rustでの機械学習

Rustで独自の機械学習モデルを構築するためのガイド

@MidJourneyさんとの共著画像

人工知能(AI)企業のHugging Faceは、最近Rustプログラミング言語向けに設計された新しい最小限の機械学習(ML)フレームワークであるCandleを導入しました。この革新的なフレームワークは、既にGitHubで7.8千のスターと283のフォークを集めるなど、大きな注目を集めています。

Hugging Faceは、30万以上のオープンソース機械学習モデルの範囲を拡大するために、開発者向けのエコシステムを拡充することに取り組んでいます。スタートアップの製品・成長責任者であるJeff Boudier氏によれば、「大局的には、開発者のためのエコシステムを開発し、それを行うための非常に多くのトラクションを見ています」とのことです。

これは、Google、Amazon、Nvidia、Salesforce、AMD、Intel、IBM、Qualcommなどの業界の巨人からの支援を含む2億3500万ドルの資金調達に続いています。

Candle: RustでのMLフレームワーク

ほとんどのMLフレームワークは、従来はPythonで書かれ、PyTorchなどのライブラリに依存しています。これらのフレームワークはしばしば大きく、クラスターでのインスタンス作成が遅くなることがCandleのFAQでも指摘されています。

Candleは、サーバーレス推論をサポートすることで他とは異なります。サーバーレス推論は、インフラストラクチャを管理せずにMLモデルを実行する方法です。これは、軽量のバイナリのデプロイを可能にすることで実現されます。バイナリは、特定の環境でアプリケーションを実行するために必要なすべてのリソースを含んだ実行可能ファイルです。

さらに、Candleを使用すると、Pythonを製品のワークロードから排除し、Pythonのパフォーマンスオーバーヘッドやグローバルインタープリターロック(GIL)に関する懸念を解消することができます。GILは有益ですが、CPythonが完全なマルチコアパフォーマンスを達成するのを妨げることがあります。

@MidJourneyさんとの共著画像

Candleの始め方

Rustベースの機械学習プロジェクトでCandleを使用したい方々には、オープンソースのデータセットを使用して線形回帰モデルを構築する方法の例があります:

extern crate…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「2023年の最高のAIアバタージェネレーター10選」

ゲームの冒険に最適なバーチャルなキャラクターを選ぶというスリルを覚えていますか?今日では、バーチャルなアイデンティテ...

人工知能

トップ10の生成AI 3Dオブジェクトジェネレーター

高性能なAI 3Dオブジェクトジェネレータにより、3Dモデルの作成と可視化がより正確かつアクセスしやすく効率的になりました。...

AIニュース

「デリー政府、提案された電子都市にAIハブを建設する計画」

技術の進歩に向けた重要な一歩として、デリー政府は提案された電子都市にAIハブを構築することを計画しています。この都市は...

AI研究

タイタン向けのOpenAIのミニAIコマンド:スーパーアライメントの解読!

AI(人工知能)の超人型人工知能(AI)への迫り来る課題に取り組むため、OpenAIが画期的な研究方向、つまり弱から強の汎化を...

機械学習

ビジュアルキャプション:大規模言語モデルを使用して、動的なビジュアルを備えたビデオ会議を補完する

Google Augmented Realityのリサーチサイエンティスト、Ruofei DuとシニアスタッフリサーチサイエンティストのAlex Olwalが投...

データサイエンス

生成AI:シームレスなデータ転送のための倫理的かつ創造的なイノベーション

この記事は、データエンリッチメントにおける生成AIの変革的な影響について掘り下げ、より正確な洞察と意思決定を促進します