キャンドル:Rustでのミニマリストな機械学習

キャンドル:Rustでの機械学習

Rustで独自の機械学習モデルを構築するためのガイド

@MidJourneyさんとの共著画像

人工知能(AI)企業のHugging Faceは、最近Rustプログラミング言語向けに設計された新しい最小限の機械学習(ML)フレームワークであるCandleを導入しました。この革新的なフレームワークは、既にGitHubで7.8千のスターと283のフォークを集めるなど、大きな注目を集めています。

Hugging Faceは、30万以上のオープンソース機械学習モデルの範囲を拡大するために、開発者向けのエコシステムを拡充することに取り組んでいます。スタートアップの製品・成長責任者であるJeff Boudier氏によれば、「大局的には、開発者のためのエコシステムを開発し、それを行うための非常に多くのトラクションを見ています」とのことです。

これは、Google、Amazon、Nvidia、Salesforce、AMD、Intel、IBM、Qualcommなどの業界の巨人からの支援を含む2億3500万ドルの資金調達に続いています。

Candle: RustでのMLフレームワーク

ほとんどのMLフレームワークは、従来はPythonで書かれ、PyTorchなどのライブラリに依存しています。これらのフレームワークはしばしば大きく、クラスターでのインスタンス作成が遅くなることがCandleのFAQでも指摘されています。

Candleは、サーバーレス推論をサポートすることで他とは異なります。サーバーレス推論は、インフラストラクチャを管理せずにMLモデルを実行する方法です。これは、軽量のバイナリのデプロイを可能にすることで実現されます。バイナリは、特定の環境でアプリケーションを実行するために必要なすべてのリソースを含んだ実行可能ファイルです。

さらに、Candleを使用すると、Pythonを製品のワークロードから排除し、Pythonのパフォーマンスオーバーヘッドやグローバルインタープリターロック(GIL)に関する懸念を解消することができます。GILは有益ですが、CPythonが完全なマルチコアパフォーマンスを達成するのを妨げることがあります。

@MidJourneyさんとの共著画像

Candleの始め方

Rustベースの機械学習プロジェクトでCandleを使用したい方々には、オープンソースのデータセットを使用して線形回帰モデルを構築する方法の例があります:

extern crate…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

UC San Diegoの研究者たちは、EUGENeという使いやすいディープラーニングゲノミクスソフトウェアを紹介します

ディープラーニングは生活のあらゆる分野で使用されています。あらゆる領域でその有用性があります。バイオメディカル研究に...

機械学習

PyTorch LSTM — 入力、隠れ状態、セル状態、および出力の形状

「PyTorchでは、LSTM(nn.LSTM()を使用)を使用するために、入力時系列を表すテンソル、隠れ状態ベクトル、セル状態ベクトル...

AIニュース

「カスタムGPT-4チャットボットの作り方」

ダンテは、技術的な能力に関係なく、誰でも5分以内に専用のAIチャットボットを作成、トレーニング、展開できるようにします

機械学習

「オーディオ機械学習入門」

「現在、音声音声認識システムを開発しているため、それに関する基礎知識を再確認する必要がありましたこの記事はその結果で...

機械学習

最初のマシンアンラーニングチャレンジを発表します

Googleの研究科学者であるFabian PedregosaとEleni Triantafillouによって投稿されました。 深層学習は最近、現実的な画像生...

機械学習

ドレスコードの解読👗 自動ファッションアイテム検出のためのディープラーニング

電子商取引の活気ある世界では、ファッション業界は独自のランウェイですしかし、もし我々がこのランウェイのドレスコードを...