エントロピーに基づく不確実性予測

エントロピー予測

この記事では、エントロピーが画像セグメンテーションの不確実性推定にどのように利用されるかを探求します。エントロピーとは何か、そしてPythonでの実装方法について説明します。

Michael Dziedzic氏による写真、Unsplash

私はニューロイメージングとAIの研究科学者としてケンブリッジ大学で働いていた際、最新のディープラーニング技術、特にnnU-Netを使用して、複雑な脳データセットの画像セグメンテーションを行うという課題に直面しました。この取り組みの中で、不確実性推定の見落としが大きなギャップであることを観察しました。しかし、信頼性のある意思決定には不確実性が重要です。

具体的な内容に入る前に、この記事で説明されているコードスニペットがすべて含まれている私のGithubリポジトリをチェックしてみてください。

画像セグメンテーションにおける不確実性の重要性

コンピュータビジョンと機械学習の世界では、画像セグメンテーションは中心的な問題です。医療画像、自動運転車、ロボット工学など、正確なセグメンテーションは効果的な意思決定に不可欠です。ただし、これらのセグメンテーションに関連する不確実性の測定はしばしば見落とされる要素です。

なぜ画像セグメンテーションにおける不確実性に注意を払う必要があるのでしょうか?

現実世界の多くのアプリケーションでは、誤ったセグメンテーションは重大な結果をもたらす可能性があります。例えば、自動運転車がオブジェクトを誤って識別したり、医療画像システムが腫瘍を誤ってラベル付けした場合、その結果は壊滅的なものになるかもしれません。不確実性推定は、モデルが予測に対してどれだけ「確信している」かを測定することで、より情報豊かな意思決定を可能にします。

私たちはまた、エントロピーを不確実性の尺度として使用して、ニューラルネットワークの学習を改善することができます。この領域は「アクティブラーニング」として知られています。このアイデアはさらに探求される予定ですが、主なアイデアはモデルが最も不確実な領域を特定し、それに焦点を当てることです。たとえば、脳の医療画像セグメンテーションを行うCNNが、腫瘍を持つ被験者に対して非常にパフォーマンスが悪い場合、このタイプのラベルをさらに取得するための努力を集中させることができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「機械学習 vs AI vs ディープラーニング vs ニューラルネットワーク:違いは何ですか?」

テクノロジーの急速な進化は、ビジネスが効率化のために洗練されたアルゴリズムにますます頼ることで、私たちの日常生活を形...

人工知能

スコット・スティーブンソン、スペルブックの共同創設者兼CEO- インタビューシリーズ

スコット・スティーブンソンは、Spellbookの共同創設者兼CEOであり、OpenAIのGPT-4および他の大規模な言語モデル(LLM)に基...

データサイエンス

「2023年にデータサイエンスFAANGの仕事をゲットする方法は?」

データサイエンスは非常に求められる分野となり、FAANG(Facebook、Amazon、Apple、Netflix、Google)企業での就職は大きな成...

人工知能

「パクストンAIの共同創業者兼CEO、タングイ・シャウ - インタビューシリーズ」

タングイ・ショウは、Paxton AIの共同創設者兼CEOであり、法的研究と起草の負担を軽減するためにGenerative AIを使用するプラ...

人工知能

「シフトのCEOであるクリス・ナーゲル – インタビューシリーズ」

クリスはSiftの最高経営責任者です彼は、Ping Identityを含むベンチャー支援および公開SaaS企業のシニアリーダーシップポジシ...

人工知能

「Ntropyの共同創設者兼CEO、ナレ・ヴァルダニアンについて - インタビューシリーズ」

「Ntropyの共同創設者兼CEOであるナレ・ヴァルダニアンは、超人的な精度で100ミリ秒以下で金融取引を解析することを可能にす...