ウェイブは、LINGO-1という新しいAIモデルを開発しましたこのモデルは、運転シーンにコメントをすることができ、質問に対しても回答することができます

ウェイブは、新しいAIモデル「LINGO-1」を開発このモデルは、運転シーンでコメントしたり、質問に回答したりすることができる

検出と診断は、車両の運用効率、安全性、安定性を改善するために不可欠です。近年、利用可能な車両データを使用して車両診断プロセスを改善するためのデータ駆動型の手法について、さまざまな研究が行われており、さまざまなデータ駆動型の手法が顧客サービスエージェントのインタラクションを向上させるために使用されています。

自然言語は、自律走行システムにおいて人間との車両間相互作用や歩行者や他の道路利用者との車両間コミュニケーションにおいて重要な役割を果たします。安全性、ユーザーエクスペリエンス、人間と自律システムの効果的な相互作用を確保するために必要です。設計は明確で、文脈を理解しやすく、ユーザーフレンドリーである必要があります。

自動運転技術企業「Wayve」は機械学習を使用して自動運転の課題を解決し、高度な詳細な地図やプログラムされたルールを必要とする高価かつ複雑なロボットスタックの必要性を排除しています。彼らはオープンループドライブコメンテータ「LINGO – 1」を立ち上げました。この技術は、明示的なプログラミングなしでどんな環境や新しい場所でも経験から学習して運転することができます。

LINGO-1は、使用者が選択肢を問いただし、シーンの理解と意思決定に対する洞察を得ることで、有意義な対話に参加することができます。さまざまな運転シーンに関する質問に答えたり、運転の意思決定に影響を与えた要因を明確にしたりすることができます。乗客と自動車の間のこのユニークな対話は透明性を高め、人々がこれらのシステムを理解し信頼するのを容易にすることができます。

LINGO-1は、カメラやレーダーからのデータ入力をハンドル操作や減速などの運転出力に変換することができます。ニューラルネットワークの意思決定は、パフォーマンスに対して徹底的にテストされ、堅牢に統合されて使用者の安全性を確保します。LINGO-1は、イギリス中を走行しながらエキスパートドライバーのコメントを収集した画像、言語、アクションデータを組み込んだスケーラブルで多様なデータセットで訓練されています。

LINGO-1は、信号待ちでの減速、車線変更、交差点での他の車両の接近による停止、他の道路利用者の選択した行動の分析など、さまざまな活動を行うことができます。人間レベルのパフォーマンスと比較して、LINGO-1は60%の正確さです。その結果は、認識や質問応答の能力、運転スキルなどを測定したベンチマークに基づいています。

LINGO-1には、モデルの能力を向上させるフィードバックメカニズムもあります。運転教官が学生ドライバーを指導するように、修正指示やユーザーフィードバックは、モデルの理解力や意思決定プロセスを時間とともに磨くことができます。最後に、自然言語を使用して基礎となる運転モデルの学習と説明可能性を向上させるための重要な第一歩となります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

AIの汎化ギャップに対処:ロンドン大学の研究者たちは、Spawriousという画像分類ベンチマークスイートを提案しましたこのスイートには、クラスと背景の間に偽の相関が含まれます

人工知能の人気が高まるにつれ、新しいモデルがほぼ毎日リリースされています。これらのモデルには新しい機能や問題解決能力...

データサイエンス

「FP8を用いたPyTorchトレーニング作業の高速化」

過去数年間、AIの分野では革命的な進展が見られており、特に最近のChatGPTなどのLLMベースのアプリケーションの人気と普及を...

機械学習

「メールの生産性を革新する:SaneBoxのAIがあなたの受信トレイの体験を変える方法」

生産性について誰かが書くたびに、暗い情景を描くことから始めるようです。「今日のデジタル時代では、誰も何もできない̷...

機械学習

言語モデルの未来:ユーザーエクスペリエンスの向上のためにマルチモダリティを取り入れる

人工知能は、非常に有益で効率的な大規模言語モデルの導入により進化しています。自然言語処理、自然言語生成、自然言語理解...

データサイエンス

「修理の闘い」

「修理の権利を巡る闘いが消費者に有利に傾いている方法」