アップルとEquall AIによる新しいAI研究が、トランスフォーマーアーキテクチャの冗長性を明らかにします:フィードフォワードネットワークの最適化が効率と精度を向上させる方法
アップルとEquall AIによる新しいAI研究:トランスフォーマーアーキテクチャの冗長性の明らかにされた効率と精度の向上方法
最近人気を集めているTransformerデザインは、特に機械翻訳(MT)において、自然言語処理(NLP)の標準手法として広く採用されています。このアーキテクチャは、追加のモデルパラメータを増やすことで、さまざまなNLPタスクでより優れたパフォーマンスを発揮するという印象的なスケーリング能力を示しています。多くの研究や調査によって、この観察結果が裏付けられています。Transformerはスケーラビリティに優れている一方で、これらのモデルを現実世界でより効果的に展開できるようにするための並行した取り組みが進んでいます。これには、レイテンシ、メモリ使用量、およびディスクスペースの問題に対処することが含まれます。
研究者は、部分の削減、パラメータの共有、次元削減など、これらの問題に対処する方法を積極的に研究しています。広く利用されているTransformerアーキテクチャは、いくつかの重要な部分で構成されており、そのうち最も重要な部分はフィードフォワードネットワーク(FFN)とアテンションです。
- アテンション – アテンションメカニズムにより、モデルは文中の単語の位置に関係なく、単語間の関係や依存関係を捉えることができます。これは、モデルが現在解析している各単語にとって、入力テキストのどの部分が最も関連性が高いかを判断するための仕組みとして機能します。フレーズ内の単語の文脈とつながりを理解するには、これが必要です。
- フィードフォワードネットワーク(FFN):FFNは、各入力トークンを非線形に変換する役割を担っています。各単語の表現に対して特定の数学的操作を行うことで、モデルの各単語の理解力に複雑さと表現力を加えます。
最近の研究では、研究チームがTransformerアーキテクチャ内のFFNの役割を調査しています。彼らは、FFNがモデルの大きなコンポーネントであり、多くのパラメータを消費しているにもかかわらず、高度な冗長性を示していることを発見しました。彼らは、パラメータの数を大幅に削減することができ、精度に大きな影響を与えることなく、これを実現しました。これは、デコーダレイヤからFFNを削除し、代わりにエンコーダレイヤ全体で共有される単一のFFNを使用することによって達成されました。
- コーネル大学とテルアビブ大学の研究者が、ドッペルゲンガーを紹介します:似た構造の画像を区別するための学習
- このAI研究は、DISC-MedLLMという包括的な解決策を提案し、大規模言語モデル(LLM)を活用して正確な医療応答を提供します
- 「ロボットがより良い判断をするにはどうすればよいのか?MITとStanfordの研究者が、高度なロボットの推論と計画のためのDiffusion-CCSPを紹介」
- デコーダレイヤ:標準のTransformerモデルの各エンコーダとデコーダには、個別のFFNがあります。研究者は、デコーダレイヤからFFNを削除しました。
- エンコーダレイヤ:各エンコーダレイヤごとに個別のFFNを持つ代わりに、すべてのエンコーダレイヤで共有される単一のFFNを使用しました。
このアプローチに伴う利点を研究者は共有しています。
- パラメータ削減:FFNコンポーネントを削除し共有することで、モデルのパラメータ数を劇的に減らしました。
- パラメータの削減にもかかわらず、モデルの精度はわずかに減少するだけでした。これは、エンコーダの多数のFFNとデコーダのFFNにはある程度の機能的な冗長性があることを示しています。
- スケーリングバック:共有されたFFNの隠れ層の次元を拡大することにより、アーキテクチャを以前のサイズに復元すると同時に、モデルの性能を維持または向上させました。これにより、従来の大規模Transformerモデルと比較して、精度とモデルの処理速度(レイテンシ)にかなりの改善がもたらされました。
まとめると、この研究は、Transformerデザインにおけるフィードフォワードネットワーク、特にデコーダレベルで、モデルのパフォーマンスにほとんど影響を与えずに合理化し共有することができることを示しています。これにより、モデルの計算負荷が軽減されるだけでなく、多様なNLPアプリケーションに対する効果と適用性が向上します。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- マイクロソフトの研究者たちは、人間のフィードバックを用いた強化学習のためのメモリ効率の高い解決策であるHydra-RLHFを紹介しました
- 「MITの研究者が提案するAskIt:ソフトウェア開発における大規模言語モデルの統合を効率化するためのドメイン固有言語」
- 「Appleの研究者たちは、暗黙的なフィードバックを持つ協調フィルタリングのための新しいテンソル分解モデルを提案する」
- このAI研究は、ポイントクラウドを2D画像、言語、音声、およびビデオと一致させる3Dマルチモダリティモデルである「Point-Bind」を紹介します
- 「MITキャンパスでのAIパイロットプログラムは、エネルギー使用量と排出物を削減することを目指しています」
- 「このAI研究は、深層学習と進化アルゴリズムを用いて、シリコンMach-Zehnderモジュレータの設計を革新します」
- 「UCLAの研究者たちは、広帯域の回折光学ニューラルネットワークに基づいて設計されたマルチスペクトルQPIシステムを紹介する」