このNYUとGoogleの論文は、クロスモーダル表現におけるシーケンス長の不一致を克服するための共同音声テキストエンコーダの仕組みを説明しています

このNYUとGoogleの論文は、シーケンス長の不一致を克服するための共同音声テキストエンコーダの仕組みを説明しています

I had trouble accessing your link so I’m going to try to continue without it.

非常に大きなモデルが、単一のモダリティで大量の非監督コーパスでトレーニングされることで、驚くべき結果を達成できることがますます明らかになってきています。これは、音声ドメインでは、単一のモデルが驚くほど広範な音響タスクに適応できることが示され、テキストドメインでは、言語モデルが例外的なゼロショットの能力を獲得していることが証明されています。同様の成果は、従来、手動でペアリングされたデータに依存していた2つのモダリティを組み合わせた状況においても、同様の技術をどのように適用するかについての調査を促しました。

興味深いアプローチの1つは、両方のモダリティに対して大きなエンコーダをトレーニングすることであり、その結果、どちらかがペアリングされていない例として提示されると、エンコーダは2つのモダリティを表現空間の似た場所にマッピングすることを学習します。このような表現は、単一のモデルを使用して数多くの画像理解およびテキスト理解タスクで最先端のパフォーマンスを実現できるだけでなく、画像/テキストドメインでも実現可能であることが示されています。

ニューヨーク大学とGoogleによる新しい研究では、明示的なアラインメントで見つかったパフォーマンスの向上が、アップサンプリングシステムで学習された暗黙のアラインメントに一貫性正則化を適用することで達成できるかどうかを調査しています。彼らは、動的時間歪みに触発された方法を開発し、音声とテキストの例のエンコーダの表現を最適にアラインメントします。明示的なアラインメントモデルが存在しない場合、チームは最適なアラインメントがトレーニング中だけでなく、ネットワークのレイヤを進むにつれて改善することも示しています。

音声認識の分野では、非ペアリングの音声とテキストデータの事前トレーニングを容易にするために、共通の音声とテキストエンコーダを持つモデルへの最近の傾向があります。音声を表現するために使用されるより長いシーケンスは、2つのシーケンスモダリティを含むため、音声認識にとって独特の難しさを提供します。そのため、エンコーダの音声表現をテキスト表現とフレームごとに比較することは、同じ埋め込み空間で両方のモダリティが表現されているにもかかわらず、より困難なプロセスとなります。

最後に、この研究では、単一言語および多言語の設定で、学習されたアラインメントモデルなしで、一貫性正則化の基準を直接のフレームワイズの比較ではなく、あるアラインメントの下で一貫性を促進するように変更することで、強力な半教師ベースラインに対して有意なWERの改善が実現できることが示されています。彼らの結果に基づくと、ミスアラインメントを許容することが、クロスモーダル表現の一貫性を強制するために必要なすべてであるようです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「メタのMusicGenを使用してColabで音楽を生成する」

「ColabでMusicGenをセットアップする方法を学びましょうこの先進のテキストから音楽へ変換するモデルは、人工知能アルゴリズ...

AIテクノロジー

6つのGenAIポッドキャスト、聴くべきです

はじめに 急速に進化する 人工知能(AI)の世界において、生成AI(GenAI)の領域は魅力的でダイナミックな分野として注目され...

AI研究

GoogleがNotebookLMを導入:あなた専用の仮想研究アシスタント

Googleは、Google Labsから最新の実験的な提供であるNotebookLMを発表しています。以前はProject Tailwindとして知られていた...

機械学習

「ディープラーニングモデルのレイヤーを凍結する方法 - 正しいやり方」

「モデルの微調整を行いたい場合や、処理する例に応じて一部のパラメータを固定することは、しばしば有用です以下の例で示さ...

機械学習

「ヘルスケアとゲノミクス産業が機械学習とAIで革新する方法」

AIと機械学習は医療研究のやり方を変えつつありますAIが薬剤探索、ゲノミクス、およびタンパク質の折りたたみに革新をもたら...

データサイエンス

デジタルツインは現代の物流を革命化しますこうすればどうなるか

「デジタルツインは物理的な世界と仮想的な世界をつなげることで、物流を変革し、効率性を向上させ、無駄を削減し、そして産...