スタンフォード大学とGoogleからのこのAI論文は、生成エージェントを紹介しています生成エージェントは、人間の振る舞いをシミュレートするインタラクティブな計算エージェントです

このAI論文は、スタンフォード大学とGoogleからの生成エージェントについて紹介しています生成エージェントは、人間の振る舞いをシミュレートする計算エージェントです

明らかに、AIボットは高品質かつ流暢な自然言語を生成することができます。長い間、研究者や実践者は、異なる種類の相互作用、人間関係、社会理論などを学ぶために、人間の行動を持つエージェントで満たされた砂場の文明を構築することを考えてきました。人間の行動の信頼性のある代替品は、仮想現実から社会的スキルトレーニング、プロトタイピングプログラムまで、さまざまなインタラクティブアプリケーションを推進するかもしれません。研究者たちは、スタンフォード大学とGoogle Researchの研究者から、アイデンティティ、変化する経験、環境に応じて人間のような個々の行動と新興的集団行動を模倣するために生成モデルを使用するエージェントを紹介しています。

このグループの主な貢献は次のとおりです:

  • エージェントの行動が信憑性があるため、エージェントの変化する経験と周囲の状況に動的に依存しています。
  • 急速に変化する状況で、長期的な記憶、検索、反射、社会的相互作用、シナリオの計画能力を実現するための革命的なフレームワーク。
  • 制御試験とエンドツーエンドテストの2つのタイプのテストを使用して、アーキテクチャの異なる部分の価値を判断し、記憶の検索のような問題を見つけます。
  • 生成エージェントを使用する対話システムが社会と倫理に与える利点と潜在的な危険について議論します。

このグループの目標は、スマートエージェントが日常生活を送り、環境や歴史的な手がかりに応じて自然言語でお互いと対話し、スケジュールを組み、情報を交換し、友情を築き、グループ活動を調整する仮想のオープンワールドフレームワークを作成することでした。大規模な言語モデル(LLM)とLLMの出力に基づいてデータを合成・抽出するメカニズムを組み合わせることで、チームは過去の失敗から学び、長期的なキャラクターの一貫性を保ちながら、より正確なリアルタイムの推論を行うことができるエージェントアーキテクチャを作成しました。

複雑な行動は、エージェントの録音の再帰的合成によってガイドされることがあります。エージェントのメモリストリームは、エージェントの以前の経験の完全な記録を含むデータベースです。エージェントは、環境の変化に適応するために、メモリストリームから関連するデータにアクセスし、この知識を処理して行動計画を立てることができます。

研究者は人間の評価者を募集し、Phaserオンラインゲーム開発フレームワークで開発されたSmallvilleサンドボックス環境で、提案された25の生成エージェントを非プレイヤーキャラクター(NPC)として機能させました。エージェントの一貫したキャラクターの描写と人間のような記憶、計画、反応、反射の説得力ある模倣は、実験の特徴でした。彼らは2日間にわたって自然言語でお互いとコミュニケーションをしました。

応用

  • 生成エージェントをマルチモーダルモデルと組み合わせることで、オンラインおよびオフラインで人間と対話できるソーシャルロボットが将来的に実現できるかもしれません。これにより、社会システムやアイデアのプロトタイプを作成し、新しいインタラクティブ体験をテストし、より現実的な人間の行動モデルを構築できるようになります。
  • GOMSやKeystroke Level Modelなどの認知モデルは、ヒューマンセンタードデザインプロセスの別の領域でも使用できます。
  • 生成エージェントをユーザーの代替として使用することで、その要件や好みについてより詳しく学び、より適した効率的な技術的相互作用を実現できるようになります。

この研究は、役割演技、社会プロトタイピング、没入型環境、ゲームなどで使用する可能性があり、動的で対話的な人間のような行動を持つLLMベースのシミュラクラの進歩に貢献しています。この研究で示された生成エージェントアーキテクチャのコンポーネントは、さらなる研究でさらに開発される可能性があります。たとえば、特定のコンテキストで最も関連性の高い素材を検索モジュールが見つける能力を向上させるために、検索機能を構成する関連性、最近性、重要性の関数を調整することができます。また、アーキテクチャのパフォーマンスを向上させるための取り組みも行われるべきです。

将来の研究では、生成エージェントの行動をより長い時間にわたって調査し、その能力と限界について完全な知識を獲得する必要があります。この研究では、エージェントの行動の評価が非常に短い期間に制限されていたためです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「ゲーミングからAIへ:NvidiaのAI革命における重要な役割」

Nvidiaは現在、Facebook、Tesla、Netflixよりも価値が高いですロイターによると、株価は過去8ヶ月で3倍になりましたしかし、...

AI研究

「AWS 研究者がジェミニを紹介:大規模な深層学習トレーニングにおける画期的な高速障害回復」

ライス大学とAmazon Web Servicesの研究者チームが、GEMINIと呼ばれる分散トレーニングシステムを開発しました。このシステム...

機械学習

このAIニュースレターは、あなたが必要なもの全てです#58

今週、私たちはNLPの領域外でAIの2つの新しい進展を見ることに興奮しましたMeta AIの最新の開発では、彼らのOpen Catalystシ...

データサイエンス

埋め込みの類似検索:データ分析の画期的な変革

オラクルは、意味に基づいて文書を取り込み、保存し、取り出すための生成的AI機能を、クラウドデータ分析サービスに追加しました

機械学習

聴覚処理の解読:深層学習モデルが脳内の音声認識とどのように類似しているか

研究によると、聴覚データを言語的表現に変換する計算は、声の知覚に関与しています。誰かが音声を聞くと、聴覚経路が活性化...

AIニュース

「GPTBotの公開:OpenAIがウェブのクロールに踏み出す大胆な一手」

デジタル革新の渦中で、OpenAIはGPTBotというウェブクローラーをリリースすることで注目を浴びています。この取り組みはAIの...