「NPって何? 最適化問題の複雑性タイプを解説する」

「NPって何? 最適化問題の複雑性タイプを解説する」

複雑な建物。作者によるMidjourneyで作成された画像。

コンピュータ科学における中心的な問題の紹介

最短経路問題は簡単に解けるのに、旅行セールスマン問題は解けないのはなぜでしょうか?この問題に関する数学的な考え方は何でしょうか?問題のサイズが大きくなると、問題が解けないほど多くのステップが必要なのかどうかを判断する方法はありますか?この記事では、このトピックの基礎を学ぶことができます。もし真剣にこの問題に取り組みたい場合は、記事の最後にこのトピックに関連するミレニアム賞の問題についての短いノートも含まれています。

NP困難性に入る前に、時間計算量の基礎を知っておく必要があります。時間計算量、ビッグオー記法、最悪ケース分析について既に知っている場合は、以下のセクションはスキップしてください。

時間計算量

コンピュータで作業しプログラムを書く際に、異なる方法で解決できる問題によく遭遇します。これらの解決策の効率性を考慮する必要があります。時間計算量は、問題の入力サイズが大きくなるにつれてアルゴリズムがどれだけ速く実行されるかを理解するのに役立ちます。

ビッグオー記法は、アルゴリズムを単純なステッカーでラベル付けすることと比較できます。入力された問題のサイズに対してアルゴリズムのステップ数がどのように成長するかを説明する方法です。

注:時間計算量は、実際の時間ではなく、実行するステップ数に関連しているため、名前が少し誤解を招くかもしれません。そうでなければ、より速いコンピュータと同じアルゴリズムを使用できるはずです。

箱(アルゴリズム)にステッカーを貼る:どれだけ速いですか? 作者による画像。

通常、最悪ケースのシナリオに焦点を当てます。なぜなら、アルゴリズムにどのような入力を与えても、ある時間以上かかることはないことを確認したいからです。これにより、困難な状況でも解決策が信頼性のあるものであることを確認できます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

アーティスの創設者兼CEO、ウィリアム・ウーによるインタビューシリーズ

ウィリアム・ウーは、Artisseの創設者兼CEOであり、ユーザーの好みに基づいて写真を精密に変更する技術を提供していますそれ...

人工知能

「Zenの共同創設者兼CTO、イオン・アレクサンドル・セカラ氏によるインタビューシリーズ」

創業者兼CTOであるIon-Alexandru Secaraは、Zen(PostureHealth Inc.)の開発を牽引しており、画期的な姿勢矯正ソフトウェア...

人工知能

「サティスファイラボのCEO兼共同創設者、ドニー・ホワイト- インタビューシリーズ」

2016年に設立されたSatisfi Labsは、会話型AI企業のリーディングカンパニーです早期の成功は、ニューヨーク・メッツ、メイシ...

機械学習

もし芸術が私たちの人間性を表現する方法であるなら、人工知能はどこに適合するのでしょうか?

MITのポストドクターであるジヴ・エプスタイン氏(SM '19、PhD '23)は、芸術やその他のメディアを作成するために生成的AIを...

人工知能

「ナレ・ヴァンダニャン、Ntropyの共同創設者兼CEO- インタビューシリーズ」

Ntropyの共同創設者兼CEOであるナレ・ヴァンダニアンは、開発者が100ミリ秒未満で超人的な精度で金融取引を解析することを可...

人工知能

エンテラソリューションズの創設者兼CEO、スティーブン・デアンジェリス- インタビューシリーズ

スティーブン・デアンジェリスは、エンタラソリューションズの創設者兼CEOであり、自律的な意思決定科学(ADS®)技術を用いて...