「NPって何? 最適化問題の複雑性タイプを解説する」
「NPって何? 最適化問題の複雑性タイプを解説する」
コンピュータ科学における中心的な問題の紹介
最短経路問題は簡単に解けるのに、旅行セールスマン問題は解けないのはなぜでしょうか?この問題に関する数学的な考え方は何でしょうか?問題のサイズが大きくなると、問題が解けないほど多くのステップが必要なのかどうかを判断する方法はありますか?この記事では、このトピックの基礎を学ぶことができます。もし真剣にこの問題に取り組みたい場合は、記事の最後にこのトピックに関連するミレニアム賞の問題についての短いノートも含まれています。
NP困難性に入る前に、時間計算量の基礎を知っておく必要があります。時間計算量、ビッグオー記法、最悪ケース分析について既に知っている場合は、以下のセクションはスキップしてください。
時間計算量
コンピュータで作業しプログラムを書く際に、異なる方法で解決できる問題によく遭遇します。これらの解決策の効率性を考慮する必要があります。時間計算量は、問題の入力サイズが大きくなるにつれてアルゴリズムがどれだけ速く実行されるかを理解するのに役立ちます。
ビッグオー記法は、アルゴリズムを単純なステッカーでラベル付けすることと比較できます。入力された問題のサイズに対してアルゴリズムのステップ数がどのように成長するかを説明する方法です。
注:時間計算量は、実際の時間ではなく、実行するステップ数に関連しているため、名前が少し誤解を招くかもしれません。そうでなければ、より速いコンピュータと同じアルゴリズムを使用できるはずです。
通常、最悪ケースのシナリオに焦点を当てます。なぜなら、アルゴリズムにどのような入力を与えても、ある時間以上かかることはないことを確認したいからです。これにより、困難な状況でも解決策が信頼性のあるものであることを確認できます。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「ベストインクラスのセッションが開催中:新しいNVIDIA Studioノートパソコンがコンテンツ、ゲーム、教育を超高速化する」
- 品質管理パトロール:スタートアップが車両の故障パターンを検出するためのモデルを構築
- オムニバースへ:Reallusionは、2方向のライブ同期とOpenUSDサポートにより、キャラクターアニメーションのワークフローを向上させます
- 「ChatGPTは、ソフトウェアエンジニアリングの質問の半分以上に対して誤った回答をします」
- X / Twitterでお金を稼ぐ方法
- 「シフトのCEOであるクリス・ナーゲル – インタビューシリーズ」
- 「カンチレバー対ChatGPT」 カンチレバーとChatGPTの比較