「転移学習の非合理的な効果」

「転移学習の非合理的な効果」

Keras Functional APIを使用したマルチ出力予測のための必須ガイド

Image by Gerd Altmann from Pixabay

複雑な深層学習ニューラルネットワークを訓練するには、かなりの計算効率、大量のデータコーパスの利用可能性、および最新の結果を達成するためのより良い特徴学習アーキテクチャが必要です。しかし、これらの要件は、スタートアップ、研究者、および学生の場合にのみ満たされることがあります。最近の深層学習の進歩により、多くの事前学習済みモデルがオープンソース化されています。

人気のある畳み込みニューラルネットワークベースの事前学習済みモデルには、VGG16/19、ResNet、MobileNet、EfficientNet、ResNeXtなどがあります。これらの事前学習済みモデルの重みとアーキテクチャを調整して、さまざまなユースケースで使用することができます。

VGG16ネットワークは、画像を入力として受け取り、多クラス予測(1000クラスのうちの1つ)を行うために使用される人気のある事前学習済みモデルです。

本記事では、Keras Functional APIを使用して複数の予測またはマルチ出力予測を行うユースケースを開発するために転移学習を活用します

問題の設定:

与えられた人物の顔の画像から、年齢、性別、民族性(マルチ出力予測)を予測するモデルを開発することです。

(Image by Author), Birds-eye illustration of the use-case

転移学習を活用し、VGG-16の事前学習済みネットワークを使用して、上記のアーキテクチャをモデリングし、マルチ出力予測を行う必要があります。残念ながら、VGGネットワークは、マルチ出力予測ではなく、マルチクラス予測(1000クラスのうちの1つ)を行うために設計されています。

解決策:

今回の課題は、Keras Functional APIを使用してVGG-16のアーキテクチャを調整して、マルチ出力予測を行うようにすることです。

データセット:

私は、23,000以上の注釈付き顔画像とそれに対応する年齢、性別、民族性を持つKaggleのデータセットを使用します(CC0ライセンスの下でオープンソース化されています)。

データの準備:

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「2023年に試してみることができるChatGPTのトップ22の代替品(無料および有料)」

ChatGPTは、さまざまなタスクにおいて最も有名で一般的に使用されているAIツールです。さまざまなコースや教材があり、その潜...

データサイエンス

データ変換ツールにおけるAIの展望

人工知能はデータ変換ツールを革新し、効率性、正確性、リアルタイム処理を向上させています

AIニュース

「ビルドの学び方 — Towards AI コミュニティ ニュースレター第2号」

「最近の数日間、OpenAIのドラマを追っていないと見逃しているよ信じられないことが起こったんだ多くの従業員がOpenAIの理事...

人工知能

カートゥーンキャラクターの中間プロンプト

Midjourneyは、芸術的なスキルや背景がなくても、漫画キャラクターを作成するのに役立つ素晴らしいツールです

機械学習

「仕事は続けられますが、同じ仕事ではありません」

「AIが私たちのコーディングスキルに迫っている一方で、人間の言語を完全に習得したわけではありませんそれが私たちの競争上...

AIニュース

「アマゾン対アリババ:会話型AI巨大企業の戦い」

テクノロジーの絶え間ない進化の中で、2つのグローバル企業が会話型AIの領域で真っ向勝負を繰り広げる。eコマースの巨人であ...