「転移学習の非合理的な効果」
「転移学習の非合理的な効果」
Keras Functional APIを使用したマルチ出力予測のための必須ガイド
複雑な深層学習ニューラルネットワークを訓練するには、かなりの計算効率、大量のデータコーパスの利用可能性、および最新の結果を達成するためのより良い特徴学習アーキテクチャが必要です。しかし、これらの要件は、スタートアップ、研究者、および学生の場合にのみ満たされることがあります。最近の深層学習の進歩により、多くの事前学習済みモデルがオープンソース化されています。
人気のある畳み込みニューラルネットワークベースの事前学習済みモデルには、VGG16/19、ResNet、MobileNet、EfficientNet、ResNeXtなどがあります。これらの事前学習済みモデルの重みとアーキテクチャを調整して、さまざまなユースケースで使用することができます。
VGG16ネットワークは、画像を入力として受け取り、多クラス予測(1000クラスのうちの1つ)を行うために使用される人気のある事前学習済みモデルです。
本記事では、Keras Functional APIを使用して複数の予測またはマルチ出力予測を行うユースケースを開発するために転移学習を活用します。
- 「教師付き機械学習と集合論を通じた現実世界の時系列異常検出」
- 「Tabnine」は、ベータ版のエンタープライズグレードのコード中心のチャットアプリケーション「Tabnine Chat」を導入しましたこれにより、開発者は自然言語を使用してTabnineのAIモデルと対話することができます
- 効率化の解除:Amazon SageMaker Pipelinesでの選択的な実行の活用
問題の設定:
与えられた人物の顔の画像から、年齢、性別、民族性(マルチ出力予測)を予測するモデルを開発することです。
転移学習を活用し、VGG-16の事前学習済みネットワークを使用して、上記のアーキテクチャをモデリングし、マルチ出力予測を行う必要があります。残念ながら、VGGネットワークは、マルチ出力予測ではなく、マルチクラス予測(1000クラスのうちの1つ)を行うために設計されています。
解決策:
今回の課題は、Keras Functional APIを使用してVGG-16のアーキテクチャを調整して、マルチ出力予測を行うようにすることです。
データセット:
私は、23,000以上の注釈付き顔画像とそれに対応する年齢、性別、民族性を持つKaggleのデータセットを使用します(CC0ライセンスの下でオープンソース化されています)。
データの準備:
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles