「パッチのせいかもしれませんか? このAIアプローチは、ビジョントランスフォーマーの成功における主要な貢献要素を分析します」
「パッチのせいかもしれませんか? このAIアプローチはビジョントランスフォーマーの成功における主要な貢献要素を分析します」
畳み込みニューラルネットワーク(CNN)はコンピュータビジョンのタスクのバックボーンとなってきました。オブジェクト検出から画像の超解像まで、あらゆる問題に対して、CNNは行き先アーキテクチャとなっています。実際には、深層学習領域での有名な飛躍(例:AlexNetなど)は、畳み込みニューラルネットワークのおかげで可能になりました。
しかし、Transformerモデルに基づいた新しいアーキテクチャであるVision Transformer(ViT)が現れ、特に大規模なデータセットにおいて古典的な畳み込みアーキテクチャを圧倒し、有望な結果を示したことで状況は変わりました。それ以来、この分野では長年にわたってCNNで対処されてきた問題に対してViTベースのソリューションを可能にしようとしています。
ViTは、画像を処理するために自己注意層を使用しますが、これらの層の計算コストはピクセルごとの画像の数に対して二次的にスケーリングされます。そのため、ViTはまず画像を複数のパッチに分割し、それらを線形的に埋め込み、そのパッチのコレクションに直接Transformerを適用します。
- 「SUSTech VIP研究室が、高性能なインタラクティブトラッキングとセグメンテーションを実現するトラックアニシングモデル(TAM)を提案する」
- 学習率のチューニングにうんざりしていますか?DoGに会ってみてください:堅牢な理論的保証に裏打ちされたシンプルでパラメータフリーの最適化手法
- このAI論文は、3Dワールドを大規模言語モデルに注入し、新しい3D-LLMのファミリーを導入することを提案しています
元のViTの成功に続いて、多くの研究がViTアーキテクチャを改良してパフォーマンスを向上させました。自己注意を新しい操作で置き換える、他の小さな変更を行うなど。しかし、これらの変更にもかかわらず、ほとんどのViTアーキテクチャは共通のシンプルなテンプレートに従います。すべてのネットワークはネットワーク全体で均等なサイズと解像度を維持し、交互のステップで空間とチャネルのミキシングを実現することで等方性の振る舞いを示します。さらに、すべてのネットワークはパッチの埋め込みを使用してネットワークの開始時にダウンサンプリングを可能にし、シンプルで均一なミキシング設計を容易にします。
このパッチベースのアプローチは、すべてのViTアーキテクチャの共通の設計選択肢であり、全体の設計プロセスを簡素化します。そこで、質問が出てきます。ビジョンTransformerの成功は、主にパッチベースの表現によるものですか?それとも、自己注意やMLP(Multi-Layer Perceptron)などの高度で表現豊かな技術の使用によるものですか?ビジョンTransformerの優れたパフォーマンスに貢献する主要な要素は何でしょうか。
それを確かめる方法があり、それはConvMixerと呼ばれています。
ConvMixerは、ViTのパフォーマンスを分析するために開発された畳み込みアーキテクチャです。それはViTと多くの点で非常に似ています:画像のパッチに直接作用し、ネットワーク全体で一貫した解像度を維持し、画像の異なる部分での空間的なミキシングとチャネルごとのミキシングを分離します。
ただし、ConvMixerの重要な違いは、Vision TransformerやMLP-Mixerモデルで使用される自己注意メカニズムとは異なり、標準の畳み込み層を使用してこれらの操作を実現することです。結果として、深度方向とポイント方向の畳み込み演算は、自己注意やMLP層よりも計算コストが低くなります。
この極めてシンプルなConvMixerは、同じパラメータ数を持つResNetなどの「標準的な」コンピュータビジョンモデル、および対応するViTやMLP-Mixerのバリアントよりも優れた性能を発揮します。これは、パッチベースの等方性のミキシングアーキテクチャが、よく行動するミキシング操作のほとんどの選択肢とうまく機能する強力なプリミティブであることを示しています。
ConvMixerは、標準の畳み込みのみを使用して、パッチ埋め込みの空間的およびチャネルの位置を独立してミキシングします。これは、ViTやMLP-Mixerの大きな受容野に触発された大きなカーネルサイズを使用することで、大幅なパフォーマンス向上を実現することができます。最後に、ConvMixerは、将来のパッチベースのアーキテクチャにおける新しい操作のベースラインとして機能することができます。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- マイクロソフトのAIチームがNaturalSpeech 2を発表:強力なゼロショット音声合成と向上した感情表現のための潜在的拡散モデルを備えた最先端のTTSシステム
- 「ディープラーニングベースのフレームワークを使用した高速かつ正確な音響ホログラム生成」
- 韓国のこの人工知能(AI)論文では、FFNeRVという新しいフレーム単位のビデオ表現が提案されていますフレーム単位のフローマップと多重解像度の時空グリッドを使用しています
- 「Rodinに会ってください:さまざまな入力ソースから3Dデジタルアバターを生成する革新的な人工知能(AI)フレームワーク」
- 「デバイス内AIの強化 QualcommとMetaがLlama 2テクノロジーと共同開発」
- マイクロソフトが「TypeChat」をリリース:型を使用して自然言語インターフェースを簡単に構築できるAIライブラリ
- 「テキストゥアをご紹介します:3Dメッシュのテキストゥアリングのための新しい人工知能(AI)フレームワーク」