「ドキュメントQ&AのためにローカルでCPU推論を実行するLlama 2」

ローカルでCPU推論を実行するLlama 2

明確に説明されたガイド:Llama 2、C Transformers、GGML、およびLangChainを使用してCPU上でクォンタイズされたオープンソースLLMアプリケーションを実行する方法

NOAAによる写真(Unsplash)

OpenAIのGPT4などのサードパーティの商用大規模言語モデル(LLM)プロバイダーは、簡単なAPI呼び出しを介してLLMの使用を民主化しました。しかし、データプライバシーやコンプライアンスの理由などから、チームはモデルの推論をエンタープライズの範囲内でセルフマネージドまたはプライベート展開する必要がある場合があります。

オープンソースのLLMの普及により、私たちには幅広い選択肢が開かれました。これにより、これらのサードパーティのプロバイダーへの依存が減りました。

オンプレミスまたはクラウド上でオープンソースモデルをホストする場合、専用のコンピューティング容量は重要な考慮事項となります。GPUインスタンスが最も便利な選択肢に見えるかもしれませんが、コストがすぐに制御不能になる可能性があります。

この簡単に理解できるガイドでは、PythonでドキュメントQ&A(回答を補完する生成)のためのローカルCPU推論でクォンタイズされたオープンソースLLMの実行方法を説明します。特に、このプロジェクトでは最新かつ高性能なLlama 2チャットモデルを活用します。

目次

(1) クォンタイズに関するクイックプライマー(2) ツールとデータ(3) オープンソースLLMの選択(4) ステップバイステップガイド(5) 次のステップ

この記事の関連GitHubリポジトリはこちらで見つけることができます。

(1) クォンタイズに関するクイックプライマー

LLMは優れた機能を持っていますが、計算およびメモリの使用量が多いとされています。これらの欠点を管理するために、モデルのメモリフットプリントを減らし、モデルのパフォーマンスを維持しながら計算推論を加速させるために、クォンタイズを使用することができます。

クォンタイズとは、数値や値を表現するために使用されるビット数を減らす技術です。LLMの文脈では、モデルのパラメーターの精度を下げることで、重みを低精度のデータ型で格納することになります。

モデルのサイズを縮小するため、クォンタイズはCPUや組み込みシステムなどのリソース制約のあるデバイスにモデルを展開する際に有益です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「Prolificの機械学習エンジニア兼AIコンサルタント、ノラ・ペトロヴァ – インタビューシリーズ」

『Nora Petrovaは、Prolificの機械学習エンジニア兼AIコンサルタントですProlificは2014年に設立され、既にGoogle、スタンフ...

人工知能

キャルレールの最高製品責任者、ライアン・ジョンソンへのインタビューシリーズ

ライアンは、初期のスタートアップからフォーチュン100の組織まで、多様なテクノロジーと製品開発のリーダーシップ経験を15年...

人工知能

「サティスファイラボのCEO兼共同創設者、ドニー・ホワイト- インタビューシリーズ」

2016年に設立されたSatisfi Labsは、会話型AI企業のリーディングカンパニーです早期の成功は、ニューヨーク・メッツ、メイシ...

人工知能

「ゲイリー・ヒュースティス、パワーハウスフォレンジクスのオーナー兼ディレクター- インタビューシリーズ」

ゲイリー・ヒュースティス氏は、パワーハウスフォレンジックスのオーナー兼ディレクターであり、ライセンスを持つ私立探偵、...

人工知能

「トリントの創設者兼CEO、ジェフ・コフマンへのインタビューシリーズ」

ジェフ・コーフマンは、ABC、CBS、CBCニュースで30年のキャリアを持った後、Trintの創設者兼CEOとなりましたジェフは手作業の...

人工知能

「aiOlaのCEO兼共同創設者、アミール・ハラマティによるインタビューシリーズ」

アミール・ハラマティは、aiOlaのCEO兼共同創業者であり、スピーチを作業可能にし、どこでも完全な正確さで業界固有のプロセ...