マイクロソフトの研究者がKOSMOS-2を紹介:視覚世界に根付くことができるマルチモーダルな大規模言語モデル

マイクロソフトの研究者がKOSMOS-2を紹介:視覚世界に根付くマルチモーダルな言語モデル

マルチモーダル大規模言語モデル(MLLMs)は、言語、ビジョン、ビジョン言語のタスクを含むさまざまな活動で一般的なインターフェースとしての成功を示しています。ゼロショットおよびフューショットの条件下では、MLLMsはテキスト、画像、音声などの一般的なモダリティを知覚し、自由な形式のテキストを使用して回答を生成することができます。本研究では、マルチモーダルな大規模言語モデルに自己を基礎付ける能力を付与します。ビジョン言語の活動では、基礎付け能力はより実用的かつ効果的な人間-AIインターフェースを提供することができます。モデルは、地理座標と一緒にその画像領域を解釈することができ、ユーザーが長いテキストの説明を入力する代わりに、アイテムや領域を画像上で直接指すことができます。

図1:KOSMOS-2を使用して生成された選択されたサンプルが表示されます。ビジュアル基礎付け、基礎付け質問応答、バウンディングボックスを使用したマルチモーダル参照、基礎付け画像キャプション、ビジュアル基礎付けなどがあります。

モデルの基礎付け機能は、視覚的な応答(つまり、バウンディングボックス)の提供も可能にし、参照表現の理解などの他のビジョン言語のタスクを支援することができます。テキストベースの応答と比較して、視覚的な応答はより正確で、共参照の曖昧さを解消します。結果として得られる自由形式のテキスト応答の基礎付け能力は、名詞句や参照表現などを画像領域に関連付けて、より正確で情報量のある応答を生成します。Microsoft Researchの研究者は、基礎付け機能を備えたKOSMOS-1をベースにしたマルチモーダルな大規模言語モデルKOSMOS-2を紹介しています。次単語予測タスクを使用して、Transformerに基づく因果的言語モデルKOSMOS-2をトレーニングします。

彼らは、基礎付けの潜在能力を十分に活用するために、基礎付けられた画像テキストのペアデータセットをウェブスケールで構築し、KOSMOS-1のマルチモーダルコーパスに統合します。LAION-2BおよびCOYO-700Mからの画像テキストの一部のペアリングが、基礎付けられた画像テキストのペアの基盤となります。彼らは、キャプションから名詞句や参照表現などのテキストスパンを抽出し、それらのオブジェクトや領域のバウンディングボックスなどの空間的な位置に接続するためのパイプラインを提供します。バウンディングボックスの地理座標を位置トークンの文字列に変換し、それらを対応するテキストスパンの後に追加します。データ形式は、画像の要素をキャプションにリンクする「ハイパーリンク」として機能します。

実験の結果、KOSMOS-2は、基盤タスク(フレーズの基盤と参照表現の理解)および参照タスク(参照表現の生成)だけでなく、KOSMOS-1で評価された言語およびビジョン言語のタスクでも競争力を持っています。図1は、基礎付け機能を含めることで、KOSMOS-2を基盤とする画像キャプションとビジュアル質問応答をはじめとする追加のダウンストリームタスクに利用する方法を示しています。GitHubでオンラインデモが利用可能です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

患者のケアを革新するAI技術

国民保健サービス(NHS)にとって重要な進展がありました。Henry Smith MPは、政府が2,100万ポンドの資金を投じて、最新の人...

データサイエンス

「JAXとHaikuを使用してゼロからTransformerエンコーダを実装する🤖」

2017年に「アテンションはすべて」という画期的な論文で紹介されたトランスフォーマーアーキテクチャは、最近の深層学習の歴...

人工知能

「3億の仕事が本当にAIによる代替でさらされるか失われるのか?」

ゴールドマン・サックスの報告書の著者たちは、AIによる置き換えによって3億人の仕事が影響を受ける可能性があると示唆してい...

コンピュータサイエンス

数千の著者がAI企業に対し、無断での作品利用を停止するよう要請

約8,000人の著者が、OpenAI、Alphabet、Metaなど6つのAI企業のリーダー宛に手紙に署名しました

AI研究

メタAIの研究者がRA-DITを導入:知識集約型タスクのための高度な検索機能を持つ言語モデルの改善のための新しい人工知能アプローチとして

“`html 大規模な言語モデル(LLM)の制約や非一般的な知識の捉えを困難にする問題、そして広範な事前トレーニングの高...