Learn more about Search Results the Hub - Page 9
- You may be interested
- LLMツールはソフトウェアの脆弱性を発見し...
- 「ReactPyを使用して、フルスタックAIアプ...
- 「世界的な野生動物GISデータベースの探索」
- ニューラルネットワークの簡単な歴史
- 「最高のデジタルコンテンツ戦略(アレッ...
- 新しいAIチューターに会ってください!
- 「アルマンド・ソラール・レザマが初代デ...
- パイソンによる機械学習エンジニアのため...
- 高度なプロンプトエンジニアリング
- 「LLMsを使用して、ロボットの新しいタス...
- ソフトウェア開発活動のための大規模シー...
- なぜAIが2023年のトップ開発者スキルとな...
- 「AI画像生成の包括的な紹介」
- 「AIによるデータアナリストのテストに挑...
- 「デジタルドルは死んでしまったのか?」
「ガードレールを使用して安全で信頼性のあるAIを設計する方法」
もしデザイン、構築、またはAIの実装に真剣に取り組んでいるのであれば、ガードレールの概念についてはすでに聞いたことがあるかもしれませんAIのリスクを緩和するためのガードレールの概念は新しいものではありませんが、最近の生成型AIの応用の波は、これらの議論をデータエンジニアや学者だけでなく、すべての人にとって関連性のあるものにしました...
「2024年を定義する7つのデータサイエンス&AIのトレンド」
約1年前のこの時期に、私は2023年にAIで大きなトレンドになると思われることについての意見記事を投稿しましたその7つのアイデアのうち、私はすべて正しかったと思います生成的AIが流行りましたし、採用と解雇も乱れました...
KubernetesでのGenAIアプリケーションの展開:ステップバイステップガイド
このガイドは、高い可用性のためにKubernetes上でGenAIアプリケーションを展開するための包括的で詳細な手順を提供します
「vLLMの解読:言語モデル推論をスーパーチャージする戦略」
イントロダクション 大規模言語モデル(LLM)は、コンピュータとの対話方法を革新しました。しかし、これらのモデルを本番環境に展開することは、メモリ消費量と計算コストの高さのために課題となることがあります。高速なLLM推論とサービングのためのオープンソースライブラリであるvLLMは、PagedAttentionと呼ばれる新しいアテンションアルゴリズムと連携して、これらの課題に対処します。このアルゴリズムは効果的にアテンションのキーと値を管理し、従来のLLMサービング方法よりも高いスループットと低いメモリ使用量を実現します。 学習目標 この記事では、以下の内容について学びます: LLM推論の課題と従来のアプローチの制約を理解する。 vLLMとは何か、そしてどのように機能するのか理解する。 vLLMを使用したLLM推論のメリット。 vLLMのPagedAttentionアルゴリズムがこれらの課題を克服する方法を発見する。 vLLMを既存のワークフローに統合する方法を知る。 この記事はData Science Blogathonの一環として公開されました。 LLM推論の課題 LLMは、テキスト生成、要約、言語翻訳などのタスクでその価値を示しています。しかし、従来のLLM推論手法でこれらのLLMを展開することはいくつかの制約を抱えています: 大きなメモリフットプリント:LLMは、パラメータや中間アクティベーション(特にアテンションレイヤーからのキーと値のパラメータ)を保存するために大量のメモリを必要とし、リソースに制約のある環境での展開が困難です。 スループットの限定:従来の実装では、大量の同時推論リクエストを処理するのが難しく、スケーラビリティと応答性が低下します。これは、大規模言語モデルが本番サーバーで実行され、GPUとの効果的な連携が行えない影響を受けます。 計算コスト:LLM推論における行列計算の負荷は、特に大規模モデルでは高額になることがあります。高いメモリ使用量と低いスループットに加えて、これによりさらにコストがかかります。 vLLMとは何か vLLMは高スループットかつメモリ効率の良いLLMサービングエンジンです。これは、PagedAttentionと呼ばれる新しいアテンションアルゴリズムと連携して、アテンションのキーと値をより小さな管理しやすいチャンクに分割することで効果的に管理します。このアプローチにより、vLLMのメモリフットプリントが削減され、従来のLLMサービング手法と比べて大きなスループットを実現することができます。テストでは、vLLMは従来のHuggingFaceサービングよりも24倍、HuggingFaceテキスト生成インファレンス(TGI)よりも2〜5倍高速になりました。また、連続的なバッチ処理とCUDAカーネルの最適化により、インファレンスプロセスをさらに洗練させています。 vLLMのメリット vLLMは従来のLLMサービング手法よりもいくつかの利点を提供します: 高いスループット:vLLMは、最も人気のあるLLMライブラリであるHuggingFace Transformersよりも最大24倍の高いスループットを実現できます。これにより、より少ないリソースでより多くのユーザーに対応することができます。 低いメモリ使用量:vLLMは、従来のLLMサービング手法と比べて非常に少ないメモリを必要とするため、ソフトハードウェアのプラットフォームに展開する準備ができています。…
「30+ AI ツールスタートアップのための(2023年12月)」
AIによって、職場での創造力、分析力、意思決定力が革新されています。現在、人工知能の能力は、企業が成長を促進し、内部プロセスをより良く制御するための絶大な機会を提供しています。人工知能の応用は広範で、自動化や予測分析からパーソナライゼーションやコンテンツ開発までさまざまです。以下は、若い企業が成長を加速させるために最適な人工知能ツールの概要です。 Pecan AI Pecan AIは、予測分析を自動化して、現代のビジネス課題(予算の縮小、コストの上昇、データサイエンスとAIリソースの制約)を解決します。Pecanの低コード予測モデリングプラットフォームは、データ駆動の意思決定を導き、ビジネスチームが目標を達成するのに役立つAI駆動の予測分析を提供します。 直感的な低コードインターフェースで、分析者は数週間で正確なモデルを設定できます。このプラットフォームでは、顧客離脱、コンバージョン、LTV、アップセル/クロスセル予測、需要予測、マーケティングミックスモデリングなど、予測モデルの容易な実装が可能です。データの準備、特徴量エンジニアリング、モデル構築、展開、モデルの監視などを自動化します。 Pecanは汎用のプラットフォームとは異なり、特定のビジネスの関心事に合わせた実行可能な予測を提供します。個別レベルの予測は詳細な洞察を提供し、一般的なBIインターフェースやビジネスシステムと統合することができます。pecan.aiで詳細をご覧いただき、無料トライアルやガイドツアーにサインアップしてください。 Hostinger AIウェブサイトビルダー Hostingerは、スタートアップオーナーを含む、ウェブサイトを作成したいすべての人に最適なAIウェブサイトビルダーを提供しています。使いやすいインターフェースで、初心者からエキスパートまで、AIを利用して独自のオンラインプラットフォームを作成できます。このビルダーにはSEOツールやeコマース機能も付属しており、ウェブサイトをさらに最適化することができます。 AdCreative.ai AdCreative.aiを使用して、広告とソーシャルメディアの戦略を強化しましょう。この究極の人工知能ソリューションを利用することで、数秒で高変換率の広告やソーシャルメディアの投稿を生成できます。AdCreative.aiで成功を最大化し、努力を最小限に抑えましょう。 SaneBox SaneBoxの強力なAIによって、メールの整理が自動化され、その他のスマートツールによって、メールの習慣が想像以上に効率的になります。今日からSaneBoxで混乱を秩序に変えましょう。 DALL·E 2 OpenAIのDALL·E 2は、単一のテキスト入力からユニークで創造的なビジュアルを生成する最先端のAIアートジェネレーターです。AIモデルは、画像とテキストの説明の大規模なデータセットでトレーニングされており、テキストに応じて詳細でビジュアルに魅力的な画像を生成します。スタートアップは、このテキストから異なる画像を生成する手法により、広告やウェブサイト、ソーシャルメディアページでグラフィックを手動で入手する必要がなく、時間とお金を節約することができます。 Otter AI 人工知能を使用することで、Otter.AIはリアルタイムの会議のメモの音声テキスト変換を提供し、共有可能、検索可能、アクセス可能、安全なものにします。会議の音声を録音し、メモを書き、スライドを自動的にキャプチャし、要約を生成する会議アシスタントを手に入れましょう。 Notion Notionは、先進のAI技術を活用してユーザーベースを拡大しようとしています。最新の機能であるNotion AIは、ノートの要約、ミーティングのアクションアイテムの特定、テキストの作成と修正など、ユーザーをサポートする高パフォーマンスな生成AIツールです。Notion…
「RAGAsを使用したRAGアプリケーションの評価」
「PythonにおいてRAGAsフレームワークを使って、検索および生成コンポーネントを個別に評価するための検索強化生成(RAG)システムの評価」
「バッギングは決定木において過学習を防止するのに役立つのか?」
「決定木は、分類と回帰の両方の問題を解決する能力、そして提供する解釈の容易さで広く知られた機械学習アルゴリズムの一種です...」
「RustコードのSIMDアクセラレーションのための9つのルール(パート1)」
「SIMDを使用してRustコードを高速化するための9つの基本ルールを探索してくださいcoresimd、最適化テクニック、およびパフォーマンスを7倍に向上させる方法を学びましょう」
「ゼロから始めるLoRAの実装」
「LoRA(ローラ)は、既存の言語モデルを微調整するための効率的で軽量な方法を提供する、Low-Rank AdaptationまたはLow-Rank Adaptorsの頭字語ですこれには、BERTのようなマスクされた言語モデルも含まれます...」
地球は平らではなく、あなたのボロノイ図もそうであるべきではありません
「Pythonを使用して、ジオスペーシャルの精度を探索し、正確なジオスペーシャル分析における球面と2Dボロノイ図の違いを理解する」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.