Learn more about Search Results Scipy - Page 9
- You may be interested
- 市民データサイエンティストとは誰で、何...
- このGoogleのAI論文は、さまざまなデバイ...
- SparkとPlotly Dashを使用したインタラク...
- 「固有表現とニュース」
- 「MLにより、がんの診断と治療に助けが期...
- ゼロショット画像からテキスト生成 BLIP-2
- 中国のこのAI論文は、HQTrackというビデオ...
- 「助成金交付における有望なプロジェクト...
- ODSCのAI週間まとめ:12月8日の週
- 合成データプラットフォーム:構造化デー...
- 「フィーチャー/トレーニング/推論パイプ...
- Juliaでの一致するチャットボットの構築
- 「コールセンターがAIを活用してエージェ...
- 数学者たちは、三体問題に対して12,000の...
- FraudGPT AIを活用したサイバー犯罪ツール...
データサイエンスと統計学の違い
イントロダクション Indeedによるデータサイエンティストの求人数が256%増加したことで、データサイエンスは業界のキーワードとなりました。さまざまな分野でのデータサイエンスの役割の需要の増加により、多くの人々がデータサイエンスの専門学位や研修プログラムを選ぶようになりました。ビジネスや政府はデータを広範に利用して重要な選択や将来の投資や活動の計画を立てています。しかし、データサイエンスでは統計の手法も意思決定に同等に貢献しています。 どちらがより有用か気になりますか?データサイエンス vs 統計を比較してみましょう! さあ、探ってみましょう! データサイエンスとは? データサイエンスは、ビジネスの重要な洞察を得るためのデータの分析です。統計、人工知能、数学、コンピュータサイエンスなど、さまざまな学問分野が組み合わさっており、これらを使用して膨大な量のデータを分析します。データサイエンティストは、なぜ問題が発生したのか、何が予想されるのか、そして何がさらに達成できるのかといった問題に対する解決策を見つけるために自身の知識を活用します。 今日では、多くの産業がデータサイエンスを利用して消費者の傾向やトレンドを予測し、新しい見通しを見つけ出しています。これにより、ビジネスは製品開発や販売に関するよく根拠のある意思決定を行うことができます。データサイエンスはプロセス改善や詐欺検出のための学問分野として機能します。政府もデータサイエンスを利用して公共サービスの効率を向上させています。 統計とは? 統計学はデータの収集と分析によってパターンやトレンドを発見し、バイアスを排除し、意思決定を支援するための数学の応用科学です。統計学はビジネスインテリジェンスの一環であり、商業データの収集と分析、トレンドの提示を含みます。 企業は統計的評価を利用してさまざまな方法で利益を得ることができます。最もパフォーマンスの良い製品ラインを特定したり、売り上げが低い営業担当者を特定したり、収益成長が異なる地域にどのように変動するかを理解したりするために統計的評価を使用することがあります。 予測モデリングは統計分析手法の利用によって恩恵を受けることができます。統計分析ツールは、さまざまな外部イベントが影響を与える可能性がある単純なトレンド予測ではなく、より重要な詳細を表示するために企業がより深く見ることができます。 データサイエンス vs 統計 データサイエンスと統計の主な違いは次の通りです: データサイエンス 統計 科学的な計算手法に基づいています。統計と応用数学を使用してビッグデータから新しい情報を導き出します。 統計学はデータの研究です。統計的関数やアルゴリズムを適用してデータから値を決定します。 データ関連の問題を解決するために適用されます。 統計はデータに基づいて実世界の問題を設計し、構築します。 生データや構造化されたデータから洞察を抽出します。…
データサイエンスの成功への道は、学習能力にかかっていますしかし、何を学ぶべきでしょうか?
過去10年間で、データサイエンスの多くの大きな進展がありましたが、これらの成果にもかかわらず、多くのプロジェクトは実現されることはありません私たちデータサイエンティストとしては、強力な成果を示すだけでなく、プロジェクトを実現させるためにも努力しなければなりません
ゼロから学ぶアテンションモデル
はじめに アテンションモデル、またはアテンションメカニズムとも呼ばれるものは、ニューラルネットワークの入力処理技術に使用されるものです。これにより、ネットワークは複雑な入力の異なる側面に集中し、全データセットを分類するまでに個別に処理できます。目標は、複雑なタスクを順次処理される注目の小さな範囲に分解することです。このアプローチは、人間の心が新しい問題をより簡単なタスクに分解し、ステップバイステップで解決する方法に類似しています。アテンションモデルは、特定のタスクにより適応し、パフォーマンスを最適化し、関連情報に注意を払う能力を向上することができます。 NLPにおけるアテンションメカニズムは、過去10年間でディープラーニングにおける最も価値のある発展の1つです。TransformerアーキテクチャやGoogleのBERTなどの自然言語処理(NLP)は、最近の進歩をもたらしています。 学習目標 ディープラーニングにおけるアテンションメカニズムの必要性、機能、モデルのパフォーマンスを向上させる方法を理解する。 アテンションメカニズムの種類や使用例を知る。 あなたのアプリケーションとアテンションメカニズムの使用のメリットとデメリットを探究する。 アテンションの実装例に従ってハンズオンでの経験を得る。 この記事はData Science Blogathonの一部として公開されました。 アテンションフレームワークを使用するタイミング アテンションフレームワークは、元々エンコーダー・デコーダー型のニューラル機械翻訳システムやコンピュータビジョンでのパフォーマンス向上に使用されました。従来の機械翻訳システムは、大規模なデータセットと複雑な機能を処理して翻訳を行っていましたが、アテンションメカニズムはこのプロセスを簡素化しました。アテンションメカニズムは、単語ごとに翻訳する代わりに、固定長のベクトルを割り当てて入力の全体的な意味と感情を捉え、より正確な翻訳を実現します。アテンションフレームワークは、エンコーダー・デコーダー型の翻訳モデルの制限に対処するのに特に役立ちます。入力のフレーズや文の正確なアラインメントと翻訳を可能にします。 アテンションメカニズムは、入力シーケンス全体を単一の固定コンテンツベクトルにエンコードするのではなく、各出力に対してコンテキストベクトルを生成することで、より効率的な翻訳が可能になります。アテンションメカニズムは翻訳の精度を向上させますが、常に言語的な完璧さを実現するわけではありません。しかし、オリジナルの入力の意図と一般的な感情を効果的に捉えることができます。要約すると、アテンションフレームワークは、従来の機械翻訳モデルの制限を克服し、より正確でコンテキストに対応した翻訳を実現するための貴重なツールです。 アテンションモデルはどのように動作するのか? 広い意味では、アテンションモデルは、クエリと一連のキー・バリューペアをマップする関数を使用して出力を生成します。これらの要素、クエリ、キー、値、および最終出力はすべてベクトルとして表されます。出力は、クエリと対応するキーの類似性を評価する互換性関数によって決定される重み付き平均値を取ることによって計算されます。 実践的な意味では、アテンションモデルは、人間が使用する視覚的アテンションメカニズムに近いものをニューラルネットワークで近似することを可能にします。人間が新しいシーンを処理する方法に似て、モデルは画像の特定の点に集中し、高解像度の理解を提供し、周囲の領域を低解像度で認識します。ネットワークがシーンをより良く理解するにつれて、焦点を調整します。 NumPyとSciPyを使用した一般的なアテンションメカニズムの実装 このセクションでは、PythonライブラリNumPyとSciPyを利用した一般的なアテンションメカニズムの実装を調べます。 まず、4つの単語のシーケンスのための単語埋め込みを定義します。単純化のために、単語埋め込みを手動で定義しますが、実際にはエンコーダーによって生成されます。 import numpy as np…
ベイジアンマーケティングミックスモデルの理解:事前仕様に深く入り込む
ベイジアン・マーケティング・ミックス・モデリングは、特にLightweightMMM(Google)やPyMC Marketing(PyMC Labs)などのオープンソースツールの最近のリリースにより、ますます注目を集めています...
特徴量が多すぎる?主成分分析を見てみましょう
次元の呪いは、機械学習における主要な問題の1つです特徴量の数が増えると、モデルの複雑さも増しますさらに、十分なトレーニングデータがない場合、それは...
Pythonの依存関係管理:どのツールを選ぶべきですか?
あなたのデータサイエンスプロジェクトが拡大するにつれて、依存関係の数も増えますプロジェクトの環境を再現可能かつメンテナンス可能に保つために、効率的な依存関係を使用することが重要です...
Plotlyの3Dサーフェスプロットを使用して、地質表面を視覚化する
地球科学の分野においては、地下に存在する地質層の完全な理解が不可欠です層の正確な位置と形状を知ることで、...
非教師あり学習シリーズ:階層クラスタリングの探索
前回の「教師なし学習シリーズ」の投稿では、最も有名なクラスタリング手法の1つであるK平均法クラスタリングについて探究しました今回の投稿では、別の手法の背後にある方法について説明します...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.