Learn more about Search Results OPT - Page 9

ハグ顔(Hugging Face)での最新技術の組み合わせであるミクストラル(Mixtral)へようこそ

Mixtral 8x7bは、ミストラルが本日リリースした刺激的な大型言語モデルで、オープンアクセスモデルの最新技術基準を上回り、多くのベンチマークでGPT-3.5を凌駕しています。私たちは、MixtralをHugging Faceエコシステムに包括的に統合してのローンチをサポートすることに興奮しています🔥! 本日リリースされる機能と統合には以下があります: ハブ上のモデル、モデルカードとライセンス(Apache 2.0) 🤗 Transformers統合 推論エンドポイントとの統合 高速で効率的な本番推論のためのテキスト生成推論との統合 🤗 TRLを使用した単一のGPUでのMixtralの微調整の例 目次 Mixtral 8x7bとは何ですか 名前について プロンプト形式 分からないこと デモ 推論 🤗 Transformersを使用する テキスト生成推論を使用する 🤗…

「量子コンピューティングのアプローチ、単一の分子をキュビットとして初めて使用」

2つの研究チームは、量子コンピュータがアルゴリズムを実行するために必要な絡み合いを起こすために、カルシウム一フッ化物分子のペアを相互作用させました

「スピークAI転写ソフトウェアのレビュー(2023年12月)」

この詳細なSpeak AIレビューで、Speak AIについての真実を発見してくださいそれは最も優れたAI転写ソフトウェアですか?この記事で確認してください!

‘LLMがデータアナリストを置き換えることはできるのか? LLMを活用したアナリストの構築’

私たちの中の誰もが、昨年の少なくとも1度は、ChatGPTがあなたの役割を置き換えることができるか(いや、むしろいつか)と考えたことがあると思います私も例外ではありません私たちは、最近の...

「AI意識の展開」

「人工知能が感情を持たないアルゴリズムなのか、感覚や感情を経験する意識的な存在なのか、どのようにわかるのでしょうか?この答えは、倫理的なガイドラインに重大な影響を与えます...」

「機械学習における確率的要素の本質を明らかにする」

導入 機械学習は、データから学習し知的な判断を行うことを可能にする分野です。様々な概念と技術を含んでいます。そのうちのひとつが「確率的」であり、多くの機械学習アルゴリズムやモデルにおいて重要な役割を果たしています。この記事では、機械学習における確率的の意味について探求し、その応用と学習プロセスの最適化における重要性を理解します。 機械学習における確率的の理解 機械学習の文脈において、確率的とはアルゴリズムやモデルにランダム性や確率性を導入することを指します。これにより、ノイズや不完全なデータを効果的に処理することができます。確率的を取り入れることにより、機械学習アルゴリズムは環境の変化に適応し、堅牢な予測を行うことができます。 機械学習における確率的プロセス 確率的プロセスは、時間にわたってランダム変数の進化を記述する数学モデルです。これらは様々な現象をモデル化し分析するために機械学習で広く使用されています。これらのプロセスはデータの固有のランダム性を捉えるために適しています。 確率的プロセスの定義と特徴 確率的プロセスは、時間や他のパラメータによってインデックス化されたランダム変数の集合です。これはシステムの確率的な振る舞いを記述するための数学的な枠組みを提供します。確率的プロセスは、定常性、独立性、マルコフ性などの特性を持っており、データの複雑な依存関係を捉えることができます。 機械学習における確率的プロセスの応用 確率的プロセスは機械学習の様々な領域で応用されます。過去の観測に基づいて将来の値を予測する時系列解析において有益です。また、金融市場、生物プロセス、自然言語処理などの複雑なシステムのモデリングやシミュレーションにおいても重要な役割を果たします。 確率的勾配降下法(SGD) 確率的勾配降下法(SGD)は、機械学習における人気のある最適化アルゴリズムです。これは従来の勾配降下法の変形であり、パラメータの更新にランダム性を導入します。SGDは特に大規模なデータセットを扱う際に効率的かつスケーラブルな最適化を可能にします。 SGDの概要 SGDでは、データセット全体を使用して勾配を計算する代わりに、ランダムに選択されたデータのサブセット、ミニバッチを使用して勾配を推定します。このランダムサンプリングにより、最適化プロセスに確率性を導入し、ノイズや動的なデータに適応性を持たせます。これらのミニバッチ勾配に基づいてモデルパラメータを反復的に更新することにより、SGDは最適解に収束します。 SGDの利点と欠点 SGDは従来の勾配降下法に比べて収束が速く、メモリを少なく使用し、特に大規模なデータセットに対して計算効率が高いです。ただし、SGDの確率的な性質により、勾配の推定値のノイズにより最適解に収束しない場合があり、学習率の調整が必要です。 機械学習アルゴリズムへのSGDの実装 SGDは線形回帰、ロジスティック回帰、ニューラルネットワークなどの様々な機械学習アルゴリズムに実装することができます。各場合において、アルゴリズムはミニバッチから計算される勾配に基づいてモデルパラメータを更新します。この確率的最適化技術により、モデルは大規模なデータセットから効率的に学習することができます。 機械学習における確率的モデル 確率的モデルは、データの不確実性を捉えて確率分布に基づいて予測する確率モデルです。これらは機械学習において複雑なシステムのモデリングや現実的なサンプルの生成に広く使用されています。 機械学習における確率的モデルのタイプ 機械学習には3つのタイプの確率的モデルがあります:隠れマルコフモデル、ガウス混合モデル、およびベイジアンネットワーク。これらのモデルはランダム性と不確実性を組み込み、現実世界の現象をより正確に表現し予測することが可能です。 これらのモデルの応用について見ていきましょう。 隠れマルコフモデル(HMM)…

2024年のインフラストラクチャー予測

企業はAIの導入の転換点を見ているランサムウェアの脅威が罰則と衝突し、ハイブリッドクラウドアーキテクチャが主流となり、インフラのアップグレードが重要です

「たぬき+GPT4を使用して、20分で顧客サポートボットを作成しましょう」

要点 このワークフローは、顧客のフィードバックメッセージに応答し、それらをGPT4 + タヌキ(オープンソース)を使用して優先されたサポートチケットに解析しますこれは誰にとって役立ちますか? 何人でも興味を持っている人は、...

一時的なグラフのベンチマーク (Ichijiteki na gurafu no benchimāku)

最近では、公開データセットや標準化された評価プロトコルの提供により、静的グラフにおける機械学習において重大な進展がなされています

「BigQueryのテーブルを最適化するためにSQLに1行追加する方法」

この記事では、クラスタリングについて説明しますクラスタリングは、BigQueryで使用できるもう1つの強力な最適化テクニックですパーティショニングと同様に、クラスタリングを使用すると、パフォーマンスの向上したクエリをより迅速かつ効率的に実行することができます

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us