Learn more about Search Results Nature - Page 9

「AIが絶滅の危機に瀕するピンクイルカの盗み聞きを支援」

「音響追跡技術は、アマゾンやその他の地域での保護プロジェクトに活用される可能性があります」

このAI論文では、「ステーブルシグネチャ:画像透かしと潜在的な拡散モデルを組み合わせたアクティブ戦略」が紹介されています

生成モデリングと自然言語処理の最近の進歩により、DALL’E 2やStable Diffusionなどのツールを使用して、写真のようなリアルなイメージの作成と操作が容易になりました。しかし、この生成AIの進歩により、写真のリアルな視覚表現への信頼の浸食について新たな懸念が生じています。 フォレンジック、つまりコンピューター生成または修正された写真を識別するための目立たない技術は、良い出発点です。ただし、既存の透かし技術は画像生成プロセスの上に重ねられることがあります。これらは、画像に見えない秘密のメッセージを埋め込み、その後、その信憑性を検証するために使用できるという原則に基づいて動作します。これにはいくつかの問題があります: 生成後の透かしは、モデルの漏洩やオープンソース化の場合に簡単に削除できます。 Stable Diffusionという別のオープンソースプロジェクトからも、わずか1行のコードをコメントアウトするだけで透かしが削除できます。 Meta AI、Centre Inria de l’Universite de Rennes’、Sorbonne Universityによる最新の研究では、シグネチャ技術を使用して透かしを生成プロセスにシームレスに組み込み、基盤となるアーキテクチャを変更することなく、生成モデルを修正して、すべての生成された画像が指定された透かしを成功裏にマスクするようにします。 この方法には多くの利点があります: ジェネレータとその出力の両方が保護されます。また、作成された画像の追加処理は不要なため、透かしを計算的に軽量化し、簡素化し、より安全なものにします。 モデルプロバイダは、異なる透かしを持つ複数のユーザーグループにモデルを配布し、その使用が倫理的であるかどうかを確認することができます。 さらに、メディア機関はAIを使用して、画像がコンピューター生成されたものであるかどうかを識別することができます。 チームは、その汎用性のために、潜在的な拡散モデル(LDM)を使用しました。この研究は、わずかな生成モデルの微調整だけで、生成されたすべての画像に透かしをネイティブに埋め込むことが可能であることを示しています。Stable Signatureは拡散プロセスを変更することなく、さまざまな種類のLDMベースの生成技術と連携します。微調整プロセスでは、透かし抽出器の知覚画像損失と隠れたメッセージ損失を使用して、LDMデコーダを再トレーニングします。透かし抽出器を準備するために、彼らは事前トレーニングのためのディープウォーターマーキング技術HiDDeNの簡略化バージョンを使用します。 研究者たちはまた、画像編集アプリケーションの評価のための現実的なテストベッドも構築しました。AI画像検出とモデルの系統追跡など、さまざまなタスクがあります。たとえば、モデルによって生成された画像が元のサイズの10%に切り取られても、研究者は106枚の写真に1つの誤検出のみで90%を検出することができました。彼らは、生成のFIDスコアに影響を与えず、生成された画像がさまざまなLDM関連のタスク(テキストから画像、インペインティング、編集など)において元のモデルによって生成された画像と知覚的に同一であることを示し、モデルの持続的な有用性を確保します。 この研究により、透かしのパッシブな検出技術に対する利点が示されました。研究者は、モデルを一般に公開する前に、他の研究者や専門家に同様の手法を取るように刺激を与えることを望んでいます。

「Co-BioNetに会ってください:モナッシュ大学の敵対的AIシステムが医療画像解析を革新し、広範な人間の注釈なしで精度を向上させています」

ディープラーニングは医療人工知能を大幅に進化させました。しかし、特に画像セグメンテーションのタスクにおいて、訓練に多量の注釈付きデータが必要であり、これは手間がかかり人間の偏見にも影響される可能性があります。モナシュ大学の研究者は、人間によって注釈付けされた医療画像の限られた利用可能性を認識し、この問題に対処するための革新的な対抗学習アプローチを提案しました。彼らは医療画像解析の進歩を目指しており、放射線科医や医療専門家に利益をもたらすことを目指しています。現在の手動の人間注釈に頼ることは時間がかかり、主観的で誤りが生じやすく、代替的な解決策の必要性を強調しています。 従来、放射線科医や他の医療専門家は、腫瘍や他の病変などの特定の興味領域をハイライトすることで、医療スキャンに手作業で注釈を付けてきました。しかしこの方法は個人の主観的な解釈に依存し、時間がかかり、特に3D医療モダリティ(例えばMRIやCT)に関しては誤りが生じやすく、治療を求める患者にとって待ち時間が延びる原因となります。さらに、医療画像で解剖学的構造(臓器や組織など)をコンツアリングするには、医療画像は通常、曖昧な領域を持つ低コントラストのスライスを持っているため、手間のかかる手動入力が必要です。 モナシュ大学の研究チームは、従来の医療画像注釈技術の制約を克服するための「デュアルビュー」AIシステムを開発しました。この革新的なアプローチでは、2つのコンポーネントが互いに競い合い、一方は医療画像にラベルを付けることで放射線科医の専門知識を模倣し、他方はAIが生成したラベルの品質を限られた人間の放射線科医による注釈付きスキャンと比較することで評価します。ラベル付きとラベルなしのデータを活用することで、提案されたAIアルゴリズムは精度を向上させ、半教師あり学習において画期的な結果を実現します。限られた注釈でも、AIモデルは情報を元に意思決定を行い、初期評価を検証し、より正確な診断や治療判断を行うことができます。この進歩は、医療画像解析において広範な人間注釈に対する有望な代替手段を提供します。 研究者たちは、彼らの新しいAIアルゴリズムにおいて、批評家ネットワークを使用して、AIシステムの各ビューがお互いの高信頼性の予測から学習できるようにしました。不確実性を取り入れることで、AIシステムは生成されたラベルの品質を効果的に測定し、医療画像セグメンテーションの精度を向上させることができます。デュアルビューと批評家を共同で学習するために、研究者たちは学習問題を最小最大最適化として定式化し、より堅牢かつ正確なセグメンテーションを実現しました。 研究者たちは、提案された手法のパフォーマンスを最新のベースラインと比較する実験を行いました。評価は質的かつ量的であり、コンピュータトモグラフィ(CT)や磁気共鳴画像(MRI)などの複数のモダリティを持つ4つの公開データセットを対象としました。その結果、提案された半教師あり手法は競合するベースラインを上回り、完全教師あり手法と競争力のあるパフォーマンスを達成しました。公開されている3つの医療データセット全体で、ラベル付きデータのわずか10%の利用により、同一の条件下で最新のベースライン手法と比較して平均3%の改善が実現されました。この結果は、不確実性に基づく共同トレーニングフレームワークが妥当なセグメンテーションマスクを生成する効率性を示し、半自動化されたセグメンテーションプロセスを容易にし、放射線科医や医療専門家のための医療画像解析を進歩させることを示しています。 提案されたアーキテクチャ https://www.nature.com/articles/s42256-023-00682-w モナシュ大学の研究チームが開発したAIシステムは、医療画像解析の重要なブレークスルーです。AIモデルが情報を元に意思決定をし、評価を検証することで、より正確な診断や治療判断を導く可能性を秘めています。研究チームのさらなる研究開発、異なる医療画像への応用の拡大、放射線科医向けの専用エンドツーエンド製品の開発など、彼らの医療をAI技術を通じて進歩させるための献身を示しています。

「グリオブラストーマ患者におけるMGMTメチル化状態を予測するための機械学習アプローチ」

今日は、雑誌Nature Scientific Reportsに掲載された、グリオブラストーマ患者に関する研究を探求します『グリオブラストーマのMGMTメチル化状態の予測を改善するために…』

「AIが異星生命を探す訓練を受けています」

「氷の海の月から、一方が永遠の夜である惑星まで、ゴールディロックスゾーンには数え切れないほどの奇妙な世界が存在します - 理論上、宇宙人が進化する可能性がある領域です宇宙での生命の探求は、長い間人間の想像力を魅了してきました今や、コンピュータの助けを借りれば、科学者たちはこれまで以上に成功する可能性があります...」

生成AI倫理’ (Seisei AI Rinri)

生成型人工知能(AI)に関する大騒ぎがある中で、この変革的な技術を責任を持って実装する方法について、未解決の問題が増えていますこの…

研究チームがニューロモーフィックコンピューティングを一歩先に進める

「リザーバコンピューティング」とも呼ばれることがありますこれは、非線形な物理現象を利用してデータストリーム中のパターンを検出するために使用されます

「脳-コンピューターインタフェースが耳の穴を介して接続する」

中国の科学者たちは、非侵襲的なインターフェースを開発しましたこれにより、人間の脳をコンピュータに内耳を介して接続することができます

最終的なDXAネーション

人工知能(AI)と機械学習(ML)は、医療を革新し、私たちを精密医療の時代に導いていますAI健康モデルを開発する動機は、死亡率を減らすことです...

ディープネットワークの活性化関数の構築

ディープニューラルネットワークの基本的な要素は、活性化関数(AF)です活性化関数は、ネットワーク内のノード(「ニューロン」)の最終出力を形成する非線形関数です一般的な活性化関数は...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us