Learn more about Search Results LSTM - Page 9
- You may be interested
- 「限られたトレーニングデータでも、機械...
- 「AIが研究論文内の問題のある画像を見つ...
- SalesForce AI 研究 BannerGen マルチモダ...
- 「CT2Hairに会ってください:ダウンストリ...
- データサイエンスの戦略の鬼才になる:AI...
- アデプトAIはFuyu-8Bをオープンソース化し...
- 「あなたのLLM + Streamlitアプリケーショ...
- GEKKOを使用して、世界を確定的な方法でモ...
- 「洪水耐性のための地理空間分析」
- このAI論文では、エッジコンピュータ上で...
- 機械をより人間らしく学習させるトレーニング
- データオブザーバビリティの先駆け:デー...
- 「AWS Trainiumを使用した高速で費用効果...
- AIによって生成された合成データ
- 「GPT-4の隠れた回帰の時間経過の定量化」
ハギングフェイスの読書会、2021年2月 – Long-range Transformers
Efficient Transformersの分類法(TayらによるEfficient Transformers:サーベイ) 共著者:Teven Le Scao、Patrick Von Platen、Suraj Patil、Yacine Jernite、Victor Sanh 毎月、私たちは特定のトピックに焦点を当て、そのトピックについて最近発表された4つの論文を読みます。それらの研究結果と共通のトレンド、そして読んだ後の追加研究についての質問を短いブログ投稿でまとめます。2021年1月の最初のトピックは「スパース化とプルーニング」であり、2021年2月には「Transformerにおけるロングレンジアテンション」に取り組みました。 イントロダクション 2018年と2019年に大型Transformerモデルが台頭した後、その計算要件を下げるために2つのトレンドが急速に現れました。第一に、条件付き計算、量子化、蒸留、プルーニングにより、計算制約のある環境で大型モデルの推論が可能になりました。私たちは既に前回の読書グループの投稿でこれに触れています。研究コミュニティはその後、事前トレーニングのコストを削減するために動きました。 特に、トランスフォーマーモデルのメモリと時間に関するシーケンス長に対する二次的なコストが問題となっていました。非常に大きなモデルの効率的なトレーニングを可能にするために、2020年には通常のNLPでは512または1024のシーケンス長がデフォルトであった範囲を超えるトランスフォーマーをスケールするための論文が数多く発表されました。 このトピックは私たちの研究討論の中心的な要素であり、私たち自身のPatrick Von PlatenはすでにReformerに4部作を捧げています。この読書グループでは、すべてのアプローチをカバーしようとせずに(アプローチは非常に多いです!)、次の4つの主なアイデアに焦点を当てます: カスタムアテンションパターン(Longformerを使用) 再帰(Compressive Transformerを使用) 低ランク近似(Linformerを使用) カーネル近似(Performerを使用) 詳細な視点については、「Efficient…
🤗変換器を使用した確率的な時系列予測
はじめに 時系列予測は重要な科学的およびビジネス上の問題であり、従来の手法に加えて、深層学習ベースのモデルの使用により、最近では多くのイノベーションが見られています。ARIMAなどの従来の手法と新しい深層学習手法の重要な違いは、次のとおりです。 確率予測 通常、従来の手法はデータセット内の各時系列に個別に適合させられます。これらはしばしば「単一」または「ローカル」な手法と呼ばれます。しかし、一部のアプリケーションでは大量の時系列を扱う際に、「グローバル」モデルをすべての利用可能な時系列に対してトレーニングすることは有益であり、これによりモデルは多くの異なるソースからの潜在表現を学習できます。 一部の従来の手法は点値(つまり、各時刻に単一の値を出力するだけ)であり、モデルは真のデータに対するL2またはL1タイプの損失を最小化することによってトレーニングされます。しかし、予測はしばしば実世界の意思決定パイプラインで使用されるため、人間が介在していても、予測の不確実性を提供することははるかに有益です。これは「確率予測」と呼ばれ、単一の予測とは対照的です。これには、確率分布をモデル化し、そこからサンプリングすることが含まれます。 つまり、ローカルな点予測モデルをトレーニングする代わりに、グローバルな確率モデルをトレーニングすることを望んでいます。深層学習はこれに非常に適しており、ニューラルネットワークは複数の関連する時系列から表現を学習することができ、データの不確実性もモデル化できます。 確率的設定では、コーシャンまたはスチューデントTなどの選択したパラメトリック分布の将来のパラメータを学習するか、条件付き分位関数を学習するか、または時系列設定に適応させたコンフォーマル予測のフレームワークを使用することが一般的です。選択した方法はモデリングの側面に影響を与えないため、通常は別のハイパーパラメータと考えることができます。確率モデルを経験的平均値や中央値による点予測モデルに変換することも常に可能です。 時系列トランスフォーマ 時系列データをモデリングする際に、その性質上、研究者はリカレントニューラルネットワーク(RNN)(LSTMやGRUなど)、畳み込みネットワーク(CNN)などを使用したモデル、および最近では時系列予測の設定に自然に適合するトランスフォーマベースの手法を開発しています。 このブログ記事では、バニラトランスフォーマ(Vaswani et al., 2017)を使用して、単変量の確率予測タスク(つまり、各時系列の1次元分布を個別に予測)を活用します。エンコーダーデコーダートランスフォーマは予測に適しているため、いくつかの帰納バイアスをうまくカプセル化しています。 まず、エンコーダーデコーダーアーキテクチャの使用は、通常、一部の記録されたデータに対して将来の予測ステップを予測したい場合に推論時に役立ちます。これは、与えられた文脈に基づいて次のトークンをサンプリングし、デコーダーに戻す(「自己回帰生成」とも呼ばれる)テキスト生成タスクに類似して考えることができます。同様に、ここでも、ある分布タイプが与えられた場合、それからサンプリングして、望ましい予測ホライズンまでの予測を提供することができます。これは、NLPの設定についてのこちらの素晴らしいブログ記事に関しても言えます。 第二に、トランスフォーマは、数千の時系列データでトレーニングする際に役立ちます。注意機構の時間とメモリの制約のため、時系列のすべての履歴を一度にモデルに入力することは実現可能ではないかもしれません。したがって、適切なコンテキストウィンドウを考慮し、このウィンドウと次の予測長サイズのウィンドウをトレーニングデータからサンプリングして、確率的勾配降下法(SGD)のためのバッチを構築する際に使用することができます。コンテキストサイズのウィンドウはエンコーダーに渡され、予測ウィンドウは因果マスク付きデコーダーに渡されます。つまり、デコーダーは次の値を学習する際には、前の時刻ステップのみを参照できます。これは、バニラトランスフォーマを機械翻訳のためにトレーニングする方法と同等であり、「教師強制」と呼ばれます。 トランスフォーマのもう一つの利点は、他のアーキテクチャに比べて、時系列の設定で一般的な欠損値をエンコーダーやデコーダーへの追加マスクとして組み込むことができ、インフィルされることなくまたは補完することなくトレーニングできることです。これは、トランスフォーマライブラリのBERTやGPT-2のようなモデルのattention_maskと同等です。注意行列の計算にパディングトークンを含めないようにします。 Transformerアーキテクチャの欠点は、バニラのTransformerの二次計算およびメモリ要件によるコンテキストと予測ウィンドウのサイズの制限です(Tay et al.、2020を参照)。さらに、Transformerは強力なアーキテクチャであるため、他の手法と比較して過学習や偽の相関をより簡単に学習する可能性があります。 🤗 Transformersライブラリには、バニラの確率的時系列Transformerモデルが付属しており、それを単純にTime Series Transformerと呼んでいます。以下のセクションでは、このようなモデルをカスタムデータセットでトレーニングする方法を示します。 環境のセットアップ…
RWKVとは、トランスフォーマーの利点を持つRNNの紹介です
ChatGPTとチャットボットを活用したアプリケーションは、自然言語処理(NLP)の領域で注目を集めています。コミュニティは、アプリケーションやユースケースに強力で信頼性の高いオープンソースモデルを常に求めています。これらの強力なモデルの台頭は、Vaswaniらによって2017年に最初に紹介されたトランスフォーマーベースのモデルの民主化と広範な採用によるものです。これらのモデルは、それ以降のSoTA NLPモデルである再帰型ニューラルネットワーク(RNN)ベースのモデルを大幅に上回りました。このブログ投稿では、RNNとトランスフォーマーの両方の利点を組み合わせた新しいアーキテクチャであるRWKVの統合を紹介します。このアーキテクチャは最近、Hugging Face transformersライブラリに統合されました。 RWKVプロジェクトの概要 RWKVプロジェクトは、Bo Peng氏が立ち上げ、リードしています。Bo Peng氏は積極的にプロジェクトに貢献し、メンテナンスを行っています。コミュニティは、公式のdiscordチャンネルで組織されており、パフォーマンス(RWKV.cpp、量子化など)、スケーラビリティ(データセットの処理とスクレイピング)、および研究(チャットの微調整、マルチモーダルの微調整など)など、さまざまなトピックでプロジェクトの成果物を常に拡張しています。RWKVモデルのトレーニングに使用されるGPUは、Stability AIによって寄付されています。 公式のdiscordチャンネルに参加し、RWKVの基本的なアイデアについて詳しく学ぶことで、参加することができます。以下の2つのブログ投稿で詳細を確認できます:https://johanwind.github.io/2023/03/23/rwkv_overview.html / https://johanwind.github.io/2023/03/23/rwkv_details.html トランスフォーマーアーキテクチャとRNN RNNアーキテクチャは、データのシーケンスを処理するための最初の広く使用されているニューラルネットワークアーキテクチャの1つであり、固定サイズの入力を取る従来のアーキテクチャとは異なります。RNNは、現在の「トークン」(つまり、データストリームの現在のデータポイント)、前の「状態」を入力として受け取り、次のトークンと次の状態を予測します。新しい状態は、次のトークンの予測を計算するために使用され、以降も同様に続きます。RNNは異なる「モード」でも使用できるため、Andrej Karpathy氏のブログ投稿で示されているように、1対1(画像分類)、1対多(画像キャプション)、多対1(シーケンス分類)、多対多(シーケンス生成)など、さまざまなシナリオでRNNを適用することが可能です。 RNNは、各ステップで予測を計算するために同じ重みを使用するため、勾配消失の問題により長距離のシーケンスに対する情報の記憶に苦労します。この制限に対処するために、LSTMやGRUなどの新しいアーキテクチャが導入されましたが、トランスフォーマーアーキテクチャはこの問題を解決するためにこれまでで最も効果的なものとなりました。 トランスフォーマーアーキテクチャでは、入力トークンは自己注意モジュールで同時に処理されます。トークンは、クエリ、キー、値の重みを使用して異なる空間に線形にプロジェクションされます。結果の行列は、アテンションスコアを計算するために直接使用され、その後値の隠れ状態と乗算されて最終的な隠れ状態が得られます。この設計により、アーキテクチャは長距離のシーケンスの問題を効果的に緩和し、RNNモデルと比較して推論とトレーニングの速度も高速化します。 トランスフォーマーアーキテクチャは、トレーニング中に従来のRNNおよびCNNに比べていくつかの利点があります。最も重要な利点の1つは、文脈的な表現を学習できる能力です。RNNやCNNとは異なり、トランスフォーマーアーキテクチャは単語ごとではなく、入力シーケンス全体を処理します。これにより、シーケンス内の単語間の長距離の依存関係を捉えることができます。これは、言語翻訳や質問応答などのタスクに特に有用です。 推論中、RNNは速度とメモリ効率の面でいくつかの利点があります。これらの利点には、単純さ(行列-ベクトル演算のみが必要)とメモリ効率(推論中にメモリ要件が増えない)が含まれます。さらに、現在のトークンと状態にのみ作用するため、コンテキストウィンドウの長さに関係なく計算速度が同じままです。 RWKVアーキテクチャ RWKVは、AppleのAttention Free Transformerに触発されています。アーキテクチャは注意深く簡素化され、最適化されており、RNNに変換することができます。さらに、TokenShiftやSmallInitEmbなどのトリックが追加されています(公式のGitHubリポジトリのREADMEにトリックのリストが記載されています)。これにより、モデルのパフォーマンスがGPTに匹敵するように向上しています。現在、トレーニングを14Bパラメータまでスケーリングするためのインフラストラクチャがあり、RWKV-4(本日の最新バージョン)では数値の不安定性など、いくつかの問題が反復的に修正されました。 RNNとトランスフォーマーの組み合わせとしてのRWKV…
トランスフォーマーエンコーダー | 自然言語処理の核心の問題
イントロダクション 非常に簡単な方法でトランスフォーマーエンコーダーを説明します。トランスフォーマーの学習に苦労している人は、このブログ投稿を最後まで読んでください。自然言語処理(NLP)の分野で働く興味がある方は、トランスフォーマーについて少なくとも基本的な知識を持っておくべきです。ほとんどの産業はこの最新のモデルをさまざまな仕事に使用しています。トランスフォーマーは、「Attention Is All You Need」という論文で紹介された最新のNLPモデルであり、従来のRNNやLSTMを上回っています。トランスフォーマーは再帰ではなくセルフアテンションに頼ることで、長期的な依存関係の捉える課題を克服しています。トランスフォーマーはNLPを革新し、BERT、GPT-3、T5などのアーキテクチャの道を開いています。 学習目標 この記事では、以下を学びます: トランスフォーマーがなぜ人気になったのか? NLPの分野でのセルフアテンションメカニズムの役割。 自分自身の入力データからキー、クエリ、バリューの行列を作成する方法。 キー、クエリ、バリューの行列を使用してアテンション行列を計算する方法。 メカニズムにおけるソフトマックス関数の適用の重要性。 この記事は、データサイエンスブログマラソンの一部として公開されました。 トランスフォーマーがRNNやLSTMモデルを上回る要因は何か? RNNやLSTMでは、長期的な依存関係を理解することができず、複雑なデータを扱う際に計算量が増えるという問題に直面しました。「Attention Is All You Need」という論文では、トランスフォーマーという新しいデザインが従来の順次ネットワークの制約を克服するために開発され、NLPアプリケーションの最先端モデルとなりました。 RNNやLSTMでは、入力とトークンは一度に1つずつ与えられ、トランスフォーマーではデータを並列に処理します。 トランスフォーマーモデルは再帰プロセスを完全に排除し、アテンションメカニズムに完全に依存しています。セルフアテンションという独特のアテンションメカニズムを使用します。 トランスフォーマーの構成と動作 多くのNLPタスクでは、トランスフォーマーモデルが現在の最先端モデルです。トランスフォーマーの導入により、NLPの分野での大きな進歩があり、BERT、GPT-3、T5などの先端システムの道を開きました。…
ゼロから大規模言語モデルを構築するための初心者ガイド
はじめに TwitterやLinkedInなどで、私は毎日多くの大規模言語モデル(LLMs)に関する投稿に出会います。これらの興味深いモデルに対してなぜこれほど多くの研究と開発が行われているのか、私は疑問に思ったこともあります。ChatGPTからBARD、Falconなど、無数のモデルの名前が飛び交い、その真の性質を解明したくなるのです。これらのモデルはどのように作成されるのでしょうか?大規模言語モデルを構築するにはどうすればよいのでしょうか?これらのモデルは、あなたが投げかけるほとんどの質問に答える能力を持つのはなぜでしょうか?これらの燃えるような疑問は私の心に長く残り、好奇心をかき立てています。この飽くなき好奇心は私の内に火をつけ、LLMsの領域に飛び込む原動力となっています。 私たちがLLMsの最先端について議論する刺激的な旅に参加しましょう。一緒に、彼らの開発の現状を解明し、彼らの非凡な能力を理解し、彼らが言語処理の世界を革新した方法に光を当てましょう。 学習目標 LLMsとその最新の状況について学ぶ。 利用可能なさまざまなLLMsとこれらのLLMsをゼロからトレーニングするアプローチを理解する。 LLMsのトレーニングと評価におけるベストプラクティスを探究する。 準備はいいですか?では、LLMsのマスタリングへの旅を始めましょう。 大規模言語モデルの簡潔な歴史 大規模言語モデルの歴史は1960年代にさかのぼります。1967年にMITの教授が、自然言語を理解するための最初のNLPプログラムであるElizaを作成しました。Elizaはパターンマッチングと置換技術を使用して人間と対話し理解することができます。その後、1970年にはMITチームによって、人間と対話し理解するための別のNLPプログラムであるSHRDLUが作成されました。 1988年には、テキストデータに存在するシーケンス情報を捉えるためにRNNアーキテクチャが導入されました。2000年代には、RNNを使用したNLPの研究が広範に行われました。RNNを使用した言語モデルは当時最先端のアーキテクチャでした。しかし、RNNは短い文にはうまく機能しましたが、長い文ではうまく機能しませんでした。そのため、2013年にはLSTMが導入されました。この時期には、LSTMベースのアプリケーションで大きな進歩がありました。同時に、アテンションメカニズムの研究も始まりました。 LSTMには2つの主要な懸念がありました。LSTMは長い文の問題をある程度解決しましたが、実際には非常に長い文とはうまく機能しませんでした。LSTMモデルのトレーニングは並列化することができませんでした。そのため、これらのモデルのトレーニングには長い時間がかかりました。 2017年には、NLPの研究において Attention Is All You Need という論文を通じてブレークスルーがありました。この論文はNLPの全体的な景色を変革しました。研究者たちはトランスフォーマーという新しいアーキテクチャを導入し、LSTMに関連する課題を克服しました。トランスフォーマーは、非常に多数のパラメータを含む最初のLLMであり、LLMsの最先端モデルとなりました。今日でも、LLMの開発はトランスフォーマーに影響を受けています。 次の5年間、トランスフォーマーよりも優れたLLMの構築に焦点を当てた重要な研究が行われました。LLMsのサイズは時間とともに指数関数的に増加しました。実験は、LLMsのサイズとデータセットの増加がLLMsの知識の向上につながることを証明しました。そのため、BERT、GPTなどのLLMsや、GPT-2、GPT-3、GPT 3.5、XLNetなどのバリアントが導入され、パラメータとトレーニングデータセットのサイズが増加しました。 2022年には、NLPにおいて別のブレークスルーがありました。 ChatGPT は、あなたが望むことを何でも答えることができる対話最適化されたLLMです。数か月後、GoogleはChatGPTの競合製品としてBARDを紹介しました。…
言語モデルの構築:ステップバイステップのBERTの実装ガイド
イントロダクション 言語処理を行う機械学習モデルの進歩は、ここ数年で急速に進んでいます。この進歩は、研究室を出て、いくつかの主要なデジタル製品の動力となり始めています。良い例として、BERTモデルがGoogle検索の重要な要素となったことが発表されたことがあります。Googleは、この進化(自然言語理解の進歩が検索に応用されること)は、「過去5年間で最大の進歩であり、検索の歴史上でも最大の進歩の1つ」と考えています。では、BERTとは何かについて理解しましょう。 BERTは、Bidirectional Encoder Representations from Transformersの略です。その設計では、未ラベルのテキストから左右の文脈の両方に依存して事前学習された深層双方向表現を作成します。我々は、追加の出力層を追加するだけで、事前学習されたBERTモデルを異なるNLPタスクに適用することができます。 学習目標 BERTのアーキテクチャとコンポーネントを理解する。 BERTの入力に必要な前処理ステップと、異なる入力シーケンスの長さを扱う方法を学ぶ。 TensorFlowやPyTorchなどの人気のある機械学習フレームワークを使用してBERTを実装するための実践的な知識を得る。 テキスト分類や固有表現認識などの特定の下流タスクにBERTを微調整する方法を学ぶ。 次に、「なぜそれが必要なのか?」という別の質問が出てきます。それを説明しましょう。 この記事は、データサイエンスブログマラソンの一環として公開されました。 なぜBERTが必要なのか? 適切な言語表現とは、機械が一般的な言語を理解する能力です。word2VecやGloveのような文脈非依存モデルは、語彙中の各単語に対して単一の単語埋め込み表現を生成します。例えば、”crane”という用語は、”crane in the sky”や”crane to lift heavy objects”といった文脈で厳密に同じ表現を持ちます。文脈モデルは、文内の他の単語に基づいて各単語を表現します。つまり、BERTはこれらの関係を双方向に捉える文脈モデルです。 BERTは、Semi-supervised…
再帰型ニューラルネットワークの基礎からの説明と視覚化
再帰型ニューラルネットワーク(RNN)は、順次操作が可能なニューラルネットワークです数年前ほど人気はありませんが、重要な発展を表しています...
アテンションメカニズムを利用した時系列予測
はじめに 時系列予測は、金融、気象予測、株式市場分析、リソース計画など、さまざまな分野で重要な役割を果たしています。正確な予測は、企業が情報に基づいた決定を行い、プロセスを最適化し、競争上の優位性を得るのに役立ちます。近年、注意機構が、時系列予測モデルの性能を向上させるための強力なツールとして登場しています。本記事では、注意の概念と、時系列予測の精度を向上させるために注意を利用する方法について探求します。 この記事は、データサイエンスブログマラソンの一環として公開されました。 時系列予測の理解 注意機構について詳しく説明する前に、まず時系列予測の基礎を簡単に見直してみましょう。時系列は、日々の温度計測値、株価、月次の売上高など、時間の経過とともに収集されたデータポイントの系列から構成されます。時系列予測の目的は、過去の観測値に基づいて将来の値を予測することです。 従来の時系列予測手法、例えば自己回帰和分移動平均(ARIMA)や指数平滑法は、統計的手法や基礎となるデータに関する仮定に依存しています。研究者たちはこれらの手法を広く利用し、合理的な結果を得ていますが、データ内の複雑なパターンや依存関係を捉えることに課題を抱えることがあります。 注意機構とは何か? 人間の認知プロセスに着想を得た注意機構は、深層学習の分野で大きな注目を集めています。機械翻訳の文脈で初めて紹介された後、注意機構は自然言語処理、画像キャプション、そして最近では時系列予測など、様々な分野で広く採用されています。 注意機構の主要なアイデアは、モデルが予測を行うために最も関連性の高い入力シーケンスの特定の部分に焦点を合わせることを可能にすることです。注意は、すべての入力要素を同等に扱うのではなく、関連性に応じて異なる重みや重要度を割り当てることができるようにします。 注意の可視化 注意の仕組みをよりよく理解するために、例を可視化してみましょう。数年にわたって日々の株価を含む時系列データセットを考えます。次の日の株価を予測したいとします。注意機構を適用することで、モデルは、将来の価格に影響を与える可能性が高い、過去の価格の特定のパターンやトレンドに焦点を合わせることができます。 提供された可視化では、各時間ステップが小さな正方形として描かれ、その特定の時間ステップに割り当てられた注意重みが正方形のサイズで示されています。注意機構は、将来の価格を予測するために、関連性が高いと判断された最近の価格により高い重みを割り当てることができることがわかります。 注意に基づく時系列予測モデル 注意機構の理解ができたところで、時系列予測モデルにどのように統合できるかを探ってみましょう。人気のあるアプローチの1つは、注意を再帰型ニューラルネットワーク(RNN)と組み合わせることで、シーケンスモデリングに広く使用されている方法です。 エンコーダ・デコーダアーキテクチャ エンコーダ・デコーダアーキテクチャは、エンコーダとデコーダの2つの主要なコンポーネントから構成されています。過去の入力シーケンスをX = [X1、X2、…、XT]、Xiが時間ステップiの入力を表すようにします。 エンコーダ エンコーダは、入力シーケンスXを処理し、基礎となるパターンと依存関係を捉えます。このアーキテクチャでは、エンコーダは通常、LSTM(長短期記憶)レイヤを使用して実装されます。入力シーケンスXを取り、隠れ状態のシーケンスH = [H1、H2、…、HT]を生成します。各隠れ状態Hiは、時間ステップiの入力のエンコード表現を表します。 H、_= LSTM(X)…
METAのHiera:複雑さを減らして精度を高める
畳み込みニューラルネットワークは、20年以上にわたってコンピュータビジョンの分野を支配してきましたトランスフォーマーの登場により、それらは放棄されると考えられていましたしかし、多くの実践者は…
Word2Vec、GloVe、FastText、解説
コンピューターは我々と同じように単語を理解することができませんコンピューターは数字を扱うことが好きですですから、コンピューターが単語とその意味を理解するのを助けるために、私たちは「埋め込み」と呼ばれるものを使用しますこれらの埋め込みは…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.