Learn more about Search Results Data Science Blogathon - Page 9

DPT(Depth Prediction Transformers)を使用した画像の深度推定

イントロダクション 画像の深度推定は、画像内のオブジェクトがどれだけ遠いかを把握することです。これは、3Dモデルの作成、拡張現実、自動運転などのコンピュータビジョンの重要な問題です。過去には、ステレオビジョンや特殊センサなどの技術を使用して深度を推定していました。しかし、今では、ディープラーニングを利用するDepth Prediction Transformers(DPT)と呼ばれる新しい方法があります。 DPTは、画像を見ることで深度を推定することができるモデルの一種です。この記事では、実際のコーディングを通じてDPTの動作原理、その有用性、およびさまざまなアプリケーションでの利用方法について詳しく学びます。 学習目標 密な予測トランスフォーマ(DPT)の概念と画像の深度推定における役割。 ビジョントランスフォーマとエンコーダーデコーダーフレームワークの組み合わせを含むDPTのアーキテクチャの探索。 Hugging Faceトランスフォーマライブラリを使用したDPTタスクの実装。 さまざまな領域でのDPTの潜在的な応用の認識。 この記事はData Science Blogathonの一部として公開されました。 深度推定トランスフォーマの理解 深度推定トランスフォーマ(DPT)は、画像内のオブジェクトの深度を推定するために特別に設計されたディープラーニングモデルの一種です。DPTは、元々言語データの処理に開発されたトランスフォーマと呼ばれる特殊なアーキテクチャを利用して、ビジュアルデータを処理するために適応し適用します。DPTの主な強みの1つは、画像のさまざまな部分間の複雑な関係をキャプチャし、長距離にわたる依存関係をモデル化する能力です。これにより、DPTは画像内のオブジェクトの深度や距離を正確に予測することができます。 深度推定トランスフォーマのアーキテクチャ 深度推定トランスフォーマ(DPT)は、ビジョントランスフォーマをエンコーダーデコーダーフレームワークと組み合わせて画像の深度を推定します。エンコーダーコンポーネントは、セルフアテンションメカニズムを使用して特徴をキャプチャしてエンコードし、画像のさまざまな部分間の関係を理解する能力を向上させます。これにより、細かい詳細を捉えることができます。デコーダーコンポーネントは、エンコードされた特徴を元の画像空間にマッピングすることで密な深度予測を再構築し、アップサンプリングや畳み込み層のような手法を利用します。DPTのアーキテクチャにより、モデルはシーンのグローバルなコンテキストを考慮し、異なる画像領域間の依存関係をモデル化することができます。これにより、正確な深度予測が可能になります。 要約すると、DPTはビジョントランスフォーマとエンコーダーデコーダーフレームワークを組み合わせて画像の深度を推定します。エンコーダーは特徴をキャプチャし、セルフアテンションメカニズムを使用してそれらをエンコードし、デコーダーは密な深度予測を再構築します。このアーキテクチャにより、DPTは細かい詳細を捉え、グローバルなコンテキストを考慮し、正確な深度予測を生成することができます。 Hugging Face Transformerを使用したDPTの実装 Hugging Faceパイプラインを使用してDPTの実践的な実装を見ていきます。コードの全体はこちらでご覧いただけます。…

PaLM AI | Googleの自家製生成AI

イントロダクション OpenAIによるGPT(Generative Pre-trained Transformers)モデル、特にChatGPTなどのような生成型AIモデルの登場以来、Googleは常にそれと同様のAIモデルを作成し、ローンチすることに取り組んできました。GoogleはBERTモデルを通じてTransformerについて最初に世界に紹介しましたが、Attention is All You Need論文を通じて、OpenAIが開発したものと同じくらい強力で効率的な大規模言語モデルを作成することはできませんでした。Googleが最初に紹介したBard AIはあまり注目されませんでした。最近、GoogleはBard AIの背後にあるPaLM(Pathways Language Model)へのAPIアクセスをリリースしました。このガイドでは、PaLM APIの使い方について説明します。 学習目標 Pathways Language Modelの使い方を学ぶ PaLMが提供する主な機能を理解する PaLM 2を使用してアプリケーションを作成する 大規模言語モデルのクイックプロトタイピングのためのMakerSuiteを活用する PaLM APIの使い方を理解する この記事はData…

「AIとともに音楽生成の世界を探索する」

はじめに AIを利用した音楽生成は、音楽の制作と楽しみ方を変革する貴重な分野として重要性を増しています。このプロジェクトでは、音楽創造に人工知能を活用する背景と目的を紹介します。AIアルゴリズムを使用して音楽を生成するプロセスとその潜在能力を探求することを目指しています。 私たちのプロジェクトは、音楽作曲を支援するAI技術を理解し、実装することに焦点を当てています。AIは、特別な数学的ルールを使用して音楽のパターン、リズム、構造を理解し、学習した内容に基づいて新しい曲を作成することができます。音楽データをモデルにトレーニングすることで、AIシステムが新しいオリジナル作品を学習し、生成できるようにします。また、特にMetaのMusicGenを重点的に取り上げ、AIによって生成された音楽の最近の進展も検討します。 音楽生成におけるAIの範囲を探求することで、この革新的な技術の可能性を探求するために、ミュージシャン、研究者、音楽愛好家をインスピレーションを与えることをこのプロジェクトの目的としています。一緒に、AIが生成できるメロディーを明らかにするために、この音楽の冒険に乗り出しましょう。 学習目標 このプロジェクトに取り組むことで、新しい技術スキルを身につけ、AIアルゴリズムを実装して革新的なアプリケーションを構築する方法についての理解を得ることができます。このプロジェクトの終わりまでに、次のことを達成することができます。 音楽作成に人工知能がどのように活用されるかを理解します。音楽作曲のためにAIモデルをトレーニングするために使用される基本的な概念や技術を学びます。 AIモデルのトレーニングに必要な関連する音楽データを収集し、準備する方法を学びます。SpotifyのBasic Pitchなどのツールを使用して、.mp3ファイルを収集し、MIDIファイルに変換する方法を発見します。 音楽生成のためのAIモデルの構築に関わる手順についても理解します。さらに、このタスクに適したモデルアーキテクチャとその関連性について学び、エポック数やバッチサイズの決定を含むモデルのトレーニングにおける実践的な経験を得ます。 トレーニングされたモデルのパフォーマンスを評価する方法を見つけます。その後、生成された音楽の品質を分析し、モデルの効果を評価し、改善のための領域を特定するためにメトリックスを評価する方法を学びます。 最後に、トレーニングされたAIモデルを使用して新しい音楽作品を生成するプロセスを探求します。 この記事はData Science Blogathonの一環として公開されました。 プロジェクトの説明 このプロジェクトの目的は、AIを使用した音楽生成の魅力的な領域を探求することです。機械学習アルゴリズムを活用することで、さまざまな音楽ジャンルでメロディーとハーモニーを生成するAIモデルを訓練することを目指しています。 このプロジェクトの焦点は、特に.mp3ファイルとしての多様な音楽データを収集することで、AIモデルのトレーニングの基礎となるものを提供することです。これらのファイルは、SpotifyのBasic Pitchなどの特殊なツールを使用してMIDI形式に変換される必要があります。この変換は重要です。なぜなら、MIDIファイルはAIモデルが簡単に解釈できる音楽要素の構造化された表現を提供するからです。 次のフェーズでは、音楽生成に特化したAIモデルの構築が行われます。準備されたMIDIデータを使用してモデルをトレーニングし、音楽に存在する潜在的なパターンと構造を捉えることを目指します。 モデルの能力を評価するためのパフォーマンス評価を実施します。これには、音楽サンプルの生成とその品質の評価が含まれ、プロセスを改善し、モデルのクリエイティブな音楽生成能力を向上させるための手段を洗練させます。 このプロジェクトの最終的な成果物は、トレーニングされたAIモデルを使用してオリジナルの作品を生成する能力です。これらの作品は、ポストプロセス技術を使用して音楽性と一貫性を豊かにするためにさらに改善されることができます。 問題の発生 このプロジェクトの目的は、音楽作成ツールへのアクセスの制限に対処することです。従来の音楽作成方法は手間がかかり、専門的な知識を要求します。さらに、新鮮で独自の音楽コンセプトを生成することは困難な課題となることがあります。このプロジェクトの目的は、これらの障壁を回避し、音楽生成のためのシームレスなソリューションを提供するために人工知能を活用し、ミュージシャン、愛好家、初心者を含む誰もが音楽を創造する力を持てるようにすることです。AIモデルによるメロディーとハーモニーの作曲能力を開発することを通じて、音楽創造のプロセスを民主化することを目指しています。…

「Gensimを使ったWord2Vecのステップバイステップガイド」

はじめに 数か月前、Office Peopleで働き始めた当初、私は言語モデル、特にWord2Vecに興味を持ちました。ネイティブのPythonユーザーとして、私は自然にGensimのWord2Vecの実装に集中し、論文やオンラインのチュートリアルを探しました。私は複数の情報源から直接コードの断片を適用し、複製しました。私はさらに深く探求し、自分の方法がどこで間違っているのかを理解しようとしました。Stackoverflowの会話、GensimのGoogleグループ、およびライブラリのドキュメントを読みました。 しかし、私は常にWord2Vecモデルを作成する上で最も重要な要素の一つが欠けていると考えていました。私の実験の中で、文をレンマ化することやフレーズ/バイグラムを探すことが結果とモデルのパフォーマンスに重要な影響を与えることを発見しました。前処理の影響はデータセットやアプリケーションによって異なりますが、この記事ではデータの準備手順を含め、素晴らしいspaCyライブラリを使って処理することにしました。 これらの問題のいくつかは私をイライラさせるので、自分自身の記事を書くことにしました。完璧だったり、Word2Vecを実装する最良の方法だったりすることは約束しませんが、他の多くの情報源よりも良いと思います。 学習目標 単語の埋め込みと意味的な関係の捉え方を理解する。 GensimやTensorFlowなどの人気のあるライブラリを使用してWord2Vecモデルを実装する。 Word2Vecの埋め込みを使用して単語の類似度を計測し、距離を算出する。 Word2Vecによって捉えられる単語の類推や意味的関係を探索する。 Word2Vecを感情分析や機械翻訳などのさまざまな自然言語処理のタスクに適用する。 特定のタスクやドメインに対してWord2Vecモデルを微調整するための技術を学ぶ。 サブワード情報や事前学習された埋め込みを使用して未知語を処理する。 Word2Vecの制約やトレードオフ、単語の意味の曖昧さや文レベルの意味について理解する。 サブワード埋め込みやWord2Vecのモデル最適化など、高度なトピックについて掘り下げる。 この記事はData Science Blogathonの一部として公開されました。 Word2Vecについての概要 Googleの研究チームは2013年9月から10月にかけて2つの論文でWord2Vecを紹介しました。研究者たちは論文とともにCの実装も公開しました。Gensimは最初の論文の後すぐにPythonの実装を完了しました。 Word2Vecの基本的な仮定は、文脈が似ている2つの単語は似た意味を持ち、モデルからは似たベクトル表現が得られるというものです。例えば、「犬」、「子犬」、「子犬」は似た文脈で頻繁に使用され、同様の周囲の単語(「良い」、「ふわふわ」、「かわいい」など)と共に使用されるため、Word2Vecによると似たベクトル表現を持ちます。 この仮定に基づいて、Word2Vecはデータセット内の単語間の関係を発見し、類似度を計算したり、それらの単語のベクトル表現をテキスト分類やクラスタリングなどの他のアプリケーションの入力として使用することができます。 Word2vecの実装 Word2Vecのアイデアは非常にシンプルです。単語の意味は、それが関連する単語と共に存在することによって推測できるという仮定をしています。これは「友だちを見せて、君が誰かを教えてあげよう」という言葉に似ています。以下はword2vecの実装例です。…

「データサイエンスを使って、トップのTwitterインフルエンサーを特定する」

はじめに Twitter上のインフルエンサーマーケティングの重要性は無視できません。特にビジネスにとっての利益に関しては言うまでもありません。この記事では、データサイエンスとPythonを使用して、トップのTwitterインフルエンサーを見つけるという魅力的なコンセプトを探求します。この技術を用いることで、ビジネスはTwitter上で賢明な選択をし、報酬を得ることができます。科学的な手法とPythonの能力を活用することで、ビジネスは、広範なブランド露出とエンゲージメントをもたらすことができるインフルエンサーを特定する力を得るのです。 この記事では、インフルエンサーマーケティングに関するさまざまなトピックを取り上げています。それには、インフルエンサーの選択要因、Twitterデータの収集と整理、データサイエンス技術を用いたデータの分析、およびインフルエンサーの評価と順位付けにおける機械学習アルゴリズムの活用などが含まれます。 学習目標 この記事の目的は、読者が特定の学習目標を達成することです。この記事を読み終えることで、読者は以下のことができるようになります: Twitter上のインフルエンサーマーケティングの重要性とビジネスへの利益を理解する。 データサイエンスとPythonを使用して適切なインフルエンサーを見つける方法についての知識を得る。 Twitter上でインフルエンサーを特定する際に考慮すべき要素や側面を学ぶ。 Pythonと関連するツールを使用してTwitterデータを収集し整理する技術を習得する。 Pandasなどのデータサイエンス技術やPythonライブラリを使用してTwitterデータを分析するスキルを開発する。 インフルエンサーの特定と順位付けにおいて機械学習アルゴリズムの使用方法を探索する。 関連するメトリクスと質的要素に基づいてインフルエンサーを評価する技術をマスターする。 Twitter上でインフルエンサーを特定する際の制約と課題を理解する。 実際のインフルエンサーマーケティングの事例から洞察を得て、重要な教訓を学ぶ。 Pythonを使用して自身のビジネスに最適なインフルエンサーを特定するために獲得した知識とスキルを適用する。 この記事はData Science Blogathonの一環として公開されました。 プロジェクトの概要 このプロジェクトの目的は、Twitter上のインフルエンサーマーケティングの複雑な領域をナビゲートするために、読者に必要なスキルと知識を提供することです。インフルエンサーの選択基準の確立、関連するTwitterデータの収集と準備、データサイエンス技術を用いたデータの分析、および機械学習アルゴリズムを用いたインフルエンサーの評価と順位付けなど、いくつかの要素を詳しく調べます。この記事で提供される体系的アプローチにより、読者は貴重な洞察と実践的な戦略を身につけて、マーケティング活動を効率化することができます。 この記事を通じて、読者はインフルエンサーの特定プロセスとそのTwitter上でのブランドの可視性とエンゲージメントへの重要な役割について、深い理解を得ることができます。プロジェクトの最後には、読者は自身のビジネスに新たに獲得した知識を自信を持って適用し、Twitter上の影響力のある人物を活用してマーケティング戦略を最適化し、目標とするオーディエンスと効果的につながることができるのです。 問題の提示 Twitter上でビジネスにとって関連性のある影響力のあるインフルエンサーを特定することは、複雑な問題です。ビジネスは、膨大な量のデータと絶えず変化するソーシャルメディアの環境の中で、適切なインフルエンサーを見つけることに苦労することがよくあります。また、真のエンゲージメントと信頼性を持つインフルエンサーを特定することもさらに困難です。 ビジネスは、ターゲットオーディエンスとブランドの価値と一致するインフルエンサーを見つけるために、大量のTwitterデータを手動で選別する際に障害に直面します。インフルエンサーの真正性と影響力を判断することは、主観的で時間のかかる作業となることがあります。これらの課題は、チャンスの逃失と効果のないパートナーシップにつながり、リソースの浪費やマーケティング戦略の妥協を招くことがよくあります。…

OpenAIを使用してカスタムチャットボットを開発する

はじめに チャットボットは自動化されたサポートと個別の体験を提供し、ビジネスが顧客とつながる方法を革新しました。人工知能(AI)の最新の進展により、チャットボットの機能性の基準が引き上げられました。この詳細な書籍では、強力な言語モデルで知られるAIプラットフォームのリーディングカンパニーであるOpenAIを使用してカスタムチャットボットを作成するための詳細な手順が提供されています。 この記事はData Science Blogathonの一環として公開されました。 チャットボットとは何ですか? チャットボットは人間の会話を模倣するコンピュータプログラムです。自然言語処理(NLP)の技術を使用して、ユーザーの言っていることを理解し、関連性のある助言を提供します。 大量のデータセットと優れた機械学習アルゴリズムの利用可能性により、チャットボットは近年ますます賢くなっています。これらの機能により、チャットボットはユーザーの意図をより良く把握し、より本物らしい返答を提供することができます。 チャットボットの具体的な利用例: 顧客サービスのチャットボットは、よく寄せられる質問に答えて、消費者に24時間体制でサポートを提供します。 マーケティングのチャットボットは、リードの質を確認し、リードを生成し、製品やサービスに関する質問に答えるのを支援することができます。 教育のチャットボットは、個別指導を提供し、学生が自分のペースで学ぶことができるようにします。 医療のチャットボットは、健康に関する情報を提供し、薬に関する質問に答え、患者を医師や他の医療専門家とつなげることができます。 OpenAIの紹介 OpenAIは人工知能の研究開発の最前線にあります。自然言語の解釈と生成に優れた言語モデルの開発に先駆けて取り組んでいます。 OpenAIは、GPT-4、GPT-3、Text-davinciなどの高度な言語モデルを提供しており、チャットボットの構築などのNLP活動に広く使用されています。 チャットボットの利点 コーディングと実装に入る前に、チャットボットの利点を理解しましょう。 24時間365日の利用可能性: チャットボットはユーザーに24時間体制でサポートを提供し、人間の顧客サービス担当者の制約をなくし、ビジネスが顧客の要求に対応できるようにします。 改善された顧客サービス: チャットボットは頻繁に問い合わせられる質問に迅速かつ正確に応答することができます。これにより、顧客サービス全体の品質が向上します。 コスト削減: ビジネスは顧客サポートの業務を自動化し、大規模なサポートスタッフの必要性を減らすことで、長期的に多額の費用を節約することができます。…

オープンソースのベクトルデータベースChromaDBを使用して、セマンティック検索アプリケーションを構築する

はじめに AIアプリケーションとユースケースの台頭に伴い、AIアプリケーションを容易にし、AI開発者が実世界のアプリケーションを構築するためのさまざまなツールとテクノロジーが増えています。そのようなツールの中で、今日はChromaDBの動作と機能について学びます。ChromaDBは、GPT3.5、GPT-4、またはその他のOSモデルなどのAIモデルからの埋め込みを格納するためのオープンソースのベクトルデータベースです。埋め込みは、任意のAIアプリケーションパイプラインの重要なコンポーネントです。コンピュータはベクトルのみを処理するため、すべてのデータは埋め込みの形式でベクトル化されて意味検索アプリケーションで使用される必要があります。 それでは、実際のコード例を使用してChromaDBの動作について詳しく説明しましょう! この記事はData Science Blogathonの一部として公開されました。 ChromaDBの基礎とライブラリのインストール ChromaDBは、大規模な言語モデルアプリケーションを開発および構築するためにベクトル埋め込みを格納するために設計されたオープンソースのベクトルデータベースです。このデータベースは、LLMアプリケーションのための知識、スキル、および事実を格納するために簡単にします。 ChromaDBは、LLMアプリケーションと統合された場合のChromaDBの動作を示しています。ChromaDBを使用すると、次の機能を実行できます。 埋め込みとそのメタデータをIDとともに格納する ドキュメントとクエリを埋め込む 埋め込みを検索する ChromaDBは非常に使いやすく、LLMパワードアプリケーションと簡単に設定できます。開発者の生産性を向上させるために設計されており、開発者にとって使いやすいツールです。 それでは、Python環境とJavascript環境にChromaDBをインストールしましょう。Jupyter Notebookでも実行でき、データサイエンティストや機械学習エンジニアがLLMモデルで実験できます。 Pythonのインストール # Python環境にChromaDBをインストール pip install chromadb Javascriptのインストール # JS環境にChromaDBをインストール…

「FalconAI、LangChain、およびChainlitを使用してチャットボットを作成する」

イントロダクション ジェネレーティブAI、特にジェネレーティブ大規模言語モデルは、その誕生以来世界を席巻しています。これは、動作可能なプログラムコードを生成することから完全なジェネレーティブAI管理のチャットサポートシステムを作成するまで、さまざまなアプリケーションと統合できたために可能になりました。しかし、ジェネレーティブAIの領域における大規模言語モデルのほとんどは、一般には非公開で、オープンソース化されていませんでした。オープンソースモデルは存在しますが、非公開の大規模言語モデルとは比べものになりません。しかし最近、FalconAIというLLMがリリースされ、OpenLLMのリーダーボードでトップに立ち、オープンソース化されました。このガイドでは、Falcon AI、LangChain、Chainlitを使用してチャットアプリケーションを作成します。 学習目標 ジェネレーティブAIアプリケーションでFalconモデルを活用する Chainlitを使用して大規模言語モデルのUIを構築する ハギングフェイスの事前学習モデルにアクセスするための推論APIで作業する LangChainを使用して大規模言語モデルとプロンプトテンプレートを連鎖させる LangChain ChainsをChainlitと統合してUIアプリケーションを作成する この記事はData Science Blogathonの一部として公開されました。 Falcon AIとは何ですか? ジェネレーティブAIの分野では、Falcon AIは最近導入された大規模言語モデルの一つで、OpenLLMのリーダーボードで第1位を獲得しています。Falcon AIはUAEのテクノロジーイノベーション研究所(TII)によって導入されました。Falcon AIのアーキテクチャは推論に最適化された形で設計されています。最初に導入された時、Falcon AIはLlama、Anthropic、DeepMindなどの最先端のモデルを抜いてOpenLLMのリーダーボードのトップに立ちました。このモデルはAWS Cloud上でトレーニングされ、2ヶ月間連続で384のGPUが接続されました。 現在、Falcon AIにはFalcon 40B(400億パラメータ)とFalcon…

「Polarsデータ操作ライブラリのはじめ方」

イントロダクション 皆さんご存知の通り、PandasはPythonのデータ操作ライブラリです。しかし、いくつかの欠点があります。この記事では、Rustプログラミング言語で書かれたPythonのもう一つの強力なデータ操作ライブラリについて学びます。Rustで書かれているにもかかわらず、Pythonプログラマー向けの追加パッケージを提供しています。これはPandasと似ているように、Pythonを使ってPolarsを始める最も簡単な方法です。 学習目標 このチュートリアルでは、以下のことを学びます: Polarsデータ操作ライブラリの導入 Polarsを使用したデータの探索 Pandas vs Polarsの速度比較 データ操作関数 Polarsを使用した遅延評価 この記事はData Science Blogathonの一部として公開されました。 Polarsの特徴 Pandasライブラリよりも高速です。 強力な式構文を持っています。 遅延評価をサポートしています。 メモリ効率も良いです。 利用可能なRAMよりも大きいデータセットも扱うことができます。 Polarsには、イーガーAPIとレイジーAPIの2つの異なるAPIがあります。イーガー実行はPandasと似ており、コードがエンカウントされるとすぐに実行され、結果がすぐに返されます。一方、レイジー実行は開発が必要な場合まで実行されません。レイジー実行は不要なコードの実行を避けるため、より効率的です。レイジー実行は不要なコードの実行を避けるため、より効率的です。 アプリケーション/ユースケース このライブラリのいくつかのアプリケーションを以下に示します: データの視覚化:このライブラリは、PlottersなどのRustの視覚化ライブラリと統合されており、データからの洞察を伝えるためのインタラクティブなダッシュボードや美しい視覚化を作成するために使用することができます。…

「トランスフォーマーを使用した音声からテキストへの完全な入門ガイド」

イントロダクション 私たちは、実際に気づかないうちにオーディオデータに関わっています。世界はオーディオデータと関連する解決すべき問題で溢れており、これらの問題の多くを機械学習を使って解決することができます。画像、テキスト、表形式のデータを使って機械学習モデルを訓練することや、これらのドメインの問題を解決するために機械学習を使うことにはお馴染みかもしれません。Transformerアーキテクチャの登場により、従来の方法よりもはるかに高い精度でオーディオ関連の問題を解決することが可能になりました。本講座では、トランスフォーマーを用いた音声テキスト変換を使用して、オーディオMLの基礎を学び、オーディオ関連の問題を機械学習を用いて解決するためのHuggingfaceライブラリの使用方法を学びます。 学習目標 オーディオ機械学習の基礎と関連する背景知識について学ぶ。 オーディオデータの収集、保存、処理方法について学ぶ。 機械学習を用いた一般的で価値のあるタスクである音声テキスト変換について学ぶ。 オーディオタスクにおいてデータセットやトレーニング済みモデルを探し、それらを使用してHuggingface Pythonライブラリを活用してオーディオ問題を解決する方法について学ぶ。 この記事はData Science Blogathonの一部として公開されました。 背景 Deep Learningの革命が2010年代初頭に起こり、AlexNetが物体認識において人間の専門知識を超えたことから、Transformerアーキテクチャはおそらくそれ以来の最も大きなブレークスルーです。Transformerは以前に解決不可能だったタスクを可能にし、多くの問題の解決を簡素化しました。最初は自然言語翻訳の結果を向上させるために開発されたものでしたが、その後は自然言語処理以外のタスクにも広く採用されるようになりました。例えば、画像に関連するタスクにはViT(Vision Transformers)が適用され、強化学習エージェントの意思決定にはDecision Transformersが使用され、最近の論文ではMagViTというTransformersをビデオに関連するさまざまなタスクに使用する方法が示されています。 これは、Attentionメカニズムを導入した有名な論文Attention is All You Needに始まり、Transformersのアーキテクチャの内部構造を既に知っているとは仮定しません。 一般の開発者やパブリックドメインでは、ChatGPTやGitHub Copilotといった名前が非常に有名ですが、Deep Learningはビジョン、強化学習、自然言語処理など、さまざまな分野で多くの実世界のユースケースで使用されています。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us