Learn more about Search Results DATETIME - Page 9
- You may be interested
- 「Appleの研究者たちは、暗黙的なフィード...
- ソロプレナーズ向けの11の最高のAIツール...
- 「NExT-GPT あらゆるモダリティに対応した...
- ジェンAIに関するトップ10の研究論文
- スターリング-7B AIフィードバックからの...
- 「SOCKS5プロキシ vs HTTPプロキシ どちら...
- 主成分分析の確率的な視点
- Apache Beamパイプラインの作成でのMap、F...
- 「最高のAI音楽生成器(2023年9月)」
- 「挑戦的に、マイクロソフトの研究者はGPT...
- テックとマインドのバランス:メンタルヘ...
- 「新しいアプリが、生成AIを使用してサウ...
- 「本当に3億の仕事はAIによる置き換えでさ...
- パンダのコピー・オン・ライトモードの詳...
- 「時系列の外れ値を解読する:1/4」
データモデリングの成功を解き放つ:3つの必須のコンテキストテーブル
データモデリングは、分析チームにとって課題となることがあります各組織には独自のビジネスエンティティが存在するため、それぞれのテーブルに適切な構造と詳細度を見つけることは限りなく難しいものですしかし、
ドメイン適応:事前に学習済みのNLPモデルの微調整
ドメイン適応のために事前学習済みNLPモデルの微調整方法を学びましょう特定の文脈でのパフォーマンスと精度を向上させますステップバイステップのガイドと実践的な例を提供します
Pythonを使用したウェブサイトモニタリングによるリアルタイムインサイトの強化
イントロダクション このプロジェクトの目的は、複数のウェブサイトの変更をモニタリングし、追跡するプロセスを自動化するPythonプログラムを開発することです。Pythonを活用して、ウェブベースのコンテンツの変更を検出し、文書化する繊細な作業を効率化することを目指しています。リアルタイムのニュース追跡、即時の製品更新、競合分析を行うために、この能力は非常に貴重です。デジタルの世界が急速に変化する中で、ウェブサイトの変更を特定することは、持続的な認識と理解を保つために不可欠です。 学習目標 このプロジェクトの学習目標は、以下のコンポーネントをカバーすることです: BeautifulSoupやScrapyなどのPythonライブラリを使用したウェブスクレイピングの方法に関する知識を向上させる。効率的にウェブサイトから価値のあるデータを抽出し、HTMLの構造をナビゲートし、特定の要素を特定し、さまざまなコンテンツタイプを処理することを目指します。 ウェブサイトのコンテンツの微妙な変化を特定するスキルを向上させる。新しくスクレイピングされたデータを既存の参照と比較して、挿入、削除、または変更を検出するための技術を学ぶことを目指します。また、これらの比較中に遭遇するさまざまなデータ形式と構造を処理することも目指します。 ウェブサイトの更新を追跡するためにPythonの自動化機能を活用する。cronジョブやPythonのスケジューリングライブラリなどのスケジューリングメカニズムを使用して、データ収集を強化し、繰り返しのタスクを排除する予定です。 HTMLのアーキテクチャについて包括的な理解を開発する。HTMLドキュメントを効率的にナビゲートし、データ抽出中に重要な要素を特定し、ウェブサイトのレイアウトと構造の変更を効果的に管理することを目指します。 データ操作技術を探索することにより、テキスト処理のスキルを向上させる。抽出したデータをクリーンアップし、洗練させ、データエンコーディングの複雑さに対処し、洞察に基づいた分析と多目的なレポートのためにデータを操作する方法を学びます。 この記事は、データサイエンスのブログマラソンの一環として公開されました。 プロジェクトの説明 このプロジェクトでは、特定のウェブサイトの変更を監視し、カタログ化するためのPythonアプリケーションを作成することを目指しています。このアプリケーションには、以下の機能が組み込まれます: ウェブサイトのチェック:特定のコンテンツやセクションの更新を検出するために、割り当てられたウェブサイトを一貫して評価します。 データの取得:ウェブスクレイピングの方法を使用して、テキスト、グラフィック、または関連データなど、必要な詳細をウェブサイトから抽出します。 変更の特定:新しくスクレイピングされたデータを以前に保存されたデータと比較し、違いや変更箇所を特定します。 通知メカニズム:変更が検出された場合にユーザーをリアルタイムに通知するアラートメカニズムを実装します。 ログ記録:変更の詳細な記録を時間スタンプや変更の情報とともに保持します。このアプリケーションは、ユーザーの設定に基づいて、任意のウェブサイトと特定のコンテンツを監視するようにカスタマイズできます。期待される結果には、ウェブサイトの変更に関する直ちにアラートが含まれ、変更の性質とタイミングを理解するための包括的な変更記録が含まれます。 問題の定義 このプロジェクトの主な目的は、特定のウェブサイトの監視プロセスを効率化することです。Pythonアプリケーションを作成することで、興味のあるウェブサイトの変更を追跡し、カタログ化します。このツールは、ニュース記事、製品リスト、その他のウェブベースのコンテンツの最新の変更について、タイムリーな更新情報を提供します。この追跡プロセスを自動化することで、時間の節約とウェブサイトへの変更や追加に対する即時の認識が確保されます。 アプローチ このプロジェクトを成功裏に実装するために、以下の手順に従う高レベルのアプローチを取ります: プロジェクトでは、BeautifulSoupやScrapyなどの強力なPythonライブラリを使用します。これらのライブラリを使用すると、ウェブサイトから情報を収集し、HTMLコンテンツを取捨選択することが容易になります。 始めに、ウェブサイトから情報を取得してベースラインを作成します。このベンチマークデータは、後で変更を特定するのに役立ちます。 入力データを設定されたベンチマークと照合して、新しい追加や変更を追跡することができます。テキストの比較やHTML構造の違いの分析など、さまざまな技術を使用する場合があります。…
クエリを劇的に改善できる2つの高度なSQLテクニック
SQLは、すべてのデータプロフェッショナルにとっての基本ですデータアナリスト、データサイエンティスト、データエンジニアであるかどうかに関係なく、クリーンで効率的なコードを書く方法をしっかりと理解している必要があります
Langchainを使用してYouTube動画用のChatGPTを構築する
はじめに ビデオとチャットで話すことができたらどのくらい便利だろうかと考えたことがありますか?私自身、ブログを書く人間として、関連する情報を見つけるために1時間ものビデオを見ることはしばしば退屈に感じます。ビデオから有用な情報を得るために、ビデオを見ることが仕事のように感じることもあります。そこで、YouTubeビデオやその他のビデオとチャットできるチャットボットを作成しました。これは、GPT-3.5-turbo、Langchain、ChromaDB、Whisper、およびGradioによって実現されました。この記事では、Langchainを使用してYouTubeビデオのための機能的なチャットボットを構築するコードの解説を行います。 学習目標 Gradioを使用してWebインターフェースを構築する Whisperを使用してYouTubeビデオを処理し、テキストデータを抽出する テキストデータを適切に処理およびフォーマットする テキストデータの埋め込みを作成する Chroma DBを構成してデータを保存する OpenAI chatGPT、ChromaDB、および埋め込み機能を使用してLangchainの会話チェーンを初期化する 最後に、Gradioチャットボットに対するクエリとストリーミング回答を行う コーディングの部分に入る前に、使用するツールや技術に慣れておきましょう。 この記事は、Data Science Blogathonの一部として公開されました。 Langchain Langchainは、Pythonで書かれたオープンソースのツールで、Large Language Modelsデータに対応したエージェントを作成できます。では、それはどういうことでしょうか?GPT-3.5やGPT-4など、商用で利用可能な大規模言語モデルのほとんどは、トレーニングされたデータに制限があります。たとえば、ChatGPTは、すでに見た質問にしか答えることができません。2021年9月以降のものは不明です。これがLangchainが解決する核心的な問題です。Wordドキュメントや個人用PDFなど、どのデータでもLLMに送信して人間らしい回答を得ることができます。ベクトルDB、チャットモデル、および埋め込み関数などのツールにはラッパーがあり、Langchainだけを使用してAIアプリケーションを簡単に構築できます。 Langchainを使用すると、エージェント(LLMボット)を構築することもできます。これらの自律エージェントは、データ分析、SQLクエリ、基本的なコードの記述など、複数のタスクに設定できます。これらのエージェントを使用することで、低レベルな知識作業をLLMに外注することができるため、時間とエネルギーを節約できます。 このプロジェクトでは、Langchainツールを使用して、ビデオ用のチャットアプリを構築します。Langchainに関する詳細については、公式サイトを訪問してください。 Whisper Whisperは、OpenAIの別の製品です。これは、オーディオまたはビデオをテキストに変換できる汎用音声認識モデルです。多言語翻訳、音声認識、および分類を実行するために、多様なオーディオをトレーニングしています。…
Pythonを使用して北極の氷の傾向を分析する
Pythonは、データサイエンスのための卓越したプログラミング言語として、計測データを収集・クリーニング・解釈することが容易になりますPythonを使って、予測をバックテストし、モデルを検証することができますそして...
DataFrameを効率的に操作するためのloc Pandasメソッドの使い方
データに含まれるカラムや、生データの種類、データの記述統計量を把握することは、今後のデータ処理において正しく取り組むために非常に重要です
紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析
はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…
Pythonの依存関係管理:どのツールを選ぶべきですか?
あなたのデータサイエンスプロジェクトが拡大するにつれて、依存関係の数も増えますプロジェクトの環境を再現可能かつメンテナンス可能に保つために、効率的な依存関係を使用することが重要です...
Netflix株の時系列分析(Pandasによる)
はじめに データの時系列分析は、この場合はNetflixの株式などの数字の集まりだけではありません。Pandasと組み合わさることで、複雑な世界の物語を魅力的に紡ぐ織物のようなものです。神秘的な糸のように、出来事の起伏や流れ、トレンドの上昇や下降、そしてパターンの出現を捉えます。それは、私たちの現実を形作る隠されたつながりや相関関係を明らかにし、過去の生き生きとした描写を提供し、未来の一端を垣間見るものです。 時系列分析は単なるツール以上のものです。それは知識と洞察を得るためのゲートウェイであります。時間に関するデータの秘密を解き明かし、生の情報を貴重な洞察に変える力を与え、情報をもとに妥当な決定を下し、リスクを軽減し、新しい機会を活用する手助けをします。 このエキサイティングな冒険に一緒に乗り出し、時系列分析の魅力的な領域に飛び込んでみましょう! 学習目標 時系列分析の概念を紹介し、そのさまざまな分野での重要性を強調し、実際の例を示して、時系列分析の実用的な応用を紹介します。 Pythonとyfinanceライブラリを使用してNetflixの株式データをインポートする方法を実演することで、時系列データを取得し、分析のために準備するための必要な手順を学びます。 最後に、シフト、ローリング、およびリサンプリングなどの時系列分析で使用される重要なPandas関数に焦点を当て、時系列データを効果的に操作および分析するための方法を示します。 この記事は、Data Science Blogathonの一環として公開されました。 時系列分析とは何ですか? 時系列とは、連続的かつ等間隔の時間間隔で収集または記録されたデータのシーケンスです。 時系列分析は、時間によって収集されたデータポイントを分析する統計的技術です。 これには、データの視覚化、統計モデリング、予測方法などの技術が含まれます。 順次データのパターン、トレンド、依存関係を研究し、洞察を抽出し、予測を行うことが含まれます。 時系列データの例 株式市場データ:歴史的な株価を分析してトレンドを特定し、将来の価格を予測する。 天気データ:時間の経過に伴って温度、降水量、その他の変数を研究して、気候パターンを理解する。 経済指標:GDP、インフレ率、失業率を分析して、経済のパフォーマンスを評価する。 売上データ:時間の経過に伴って売上高を調べ、パターンを特定し、将来の売上高を予測する。 ウェブトラフィック:ウェブトラフィックメトリックを分析して、ユーザーの行動を理解し、ウェブサイトのパフォーマンスを最適化する。 時系列の構成要素 時系列の4つの構成要素があります。それらは次のとおりです。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.