Learn more about Search Results Amazon CloudWatch - Page 9

「AWS reInvent 2023での生成的AIとMLのガイド」

はい、AWS reInventの季節がやってきましたいつものように、場所はラスベガスです!カレンダーに印をつけ、ホテルを予約し、さらには航空券も購入済みですねさて、それでは第12回reInventで開催されるジェネレーティブAIと機械学習(ML)のセッションに参加するためのガイダンスが必要ですジェネレーティブAIは以前のイベントでも登場していましたが、今年はさらなる進化を遂げます基調講演中にはいくつかの注目発表がありますし、私たちのトラックのほとんどのセッションでもジェネレーティブAIを導入していますそのため、私たちのトラックを「ジェネレーティブAIとML」と呼ぶことができますこの記事では、トラックの構成とおすすめのセッションを紹介しますジェネレーティブAIに焦点を当てたトラックではありますが、他のトラックにも関連セッションがありますので、セッションカタログを閲覧する際には「ジェネレーティブAI」のタグを使用してください

自分自身のレンズでウェルアーキテクチャなIDPソリューションを構築する – パート6:持続可能性

「インテリジェント文書処理(IDP)プロジェクトでは、光学式文字認識(OCR)と自然言語処理(NLP)を組み合わせて、文書を自動的に読み取り理解することが一般的です顧客はあらゆる業界でIDPワークロードをAWS上で実行し、KYCフォーム、税務書類、請求書、保険請求書、配送報告書、在庫報告書などのユースケースを自動化することでビジネス価値を提供しています[...]」

アマゾンセージメーカースタジオを使用して、素早い実験結果のためにLlama 2、LangChain、およびPineconeを使用してRAG型の質問応答ソリューションを構築しましょう

「Retrieval Augmented Generation(RAG)は、ファインチューニングなしで大規模言語モデル(LLM)に外部の知識源(リポジトリ、データベース、APIなど)へのアクセスを提供することができます質問応答に対して生成的AIを使用する際、RAGはLLMが最も関連性の高い最新情報で質問に回答し、必要に応じて引用することができるようにします...」

「大規模な言語モデルを使ったフェイクニュースの検出」を活用する

フェイクニュースは、虚偽で作り話、あるいは意図的に誤った情報を伝えるニュースと定義され、印刷機の登場と同時に現れましたフェイクニュースやディスインフォメーションのオンラインでの急速な拡散は、一般の人々を欺くだけでなく、社会、政治、経済にも深い影響を与える可能性があります

「ユーザーとの対話により、RAG使用例でのLLM応答を改善する」

最も一般的な生成AIと大規模言語モデル(LLM)の応用の1つは、特定の外部知識コーパスに基づく質問に答えることです情報検索増強生成(RAG)は、外部知識ベースを使用する質問応答システムを構築するための人気のある技術です詳細については、「Amazonと一緒に強力な質問応答ボットを作成する」を参照してください

2024年のトップ10のAI主導のデータ分析企業

2024年にデータ分析の世界を革新する傾向にあるトップのビジネスタイタンを発見してくださいIBM CloudからGoogle Cloudまで、これらのAI駆動のデータ分析企業は人工知能の力を活用し、膨大なデータの貯蔵庫から貴重な洞察を解き放ち、企業に行動可能な知識を提供しています

「初めに、AWS上でMONAI Deployを使用して医療画像AI推論パイプラインを構築しましょう!」

この記事では、MONAI Deploy App SDKで構築されたアプリケーションに再利用可能なMAPコネクタを作成する方法を紹介しますこれにより、クラウドネイティブなDICOMストアから医療画像AIのワークロードへの画像データの取得を統合し、高速化することができますMONAI Deploy SDKは、病院の運用をサポートするために使用することができますさらに、MAP AIアプリケーションをSageMakerでスケールアップするための2つのホスティングオプションもデモンストレーションします

Hugging Face TransformersとAWS Inferentiaを使用して、BERT推論を高速化する

ノートブック:sagemaker/18_inferentia_inference BERTとTransformersの採用はますます広がっています。Transformerベースのモデルは、自然言語処理だけでなく、コンピュータビジョン、音声、時系列でも最先端のパフォーマンスを達成しています。💬 🖼 🎤 ⏳ 企業は、大規模なワークロードのためにトランスフォーマーモデルを使用するため、実験および研究フェーズから本番フェーズにゆっくりと移行しています。ただし、デフォルトでは、BERTとその仲間は、従来の機械学習アルゴリズムと比較して、比較的遅く、大きく、複雑なモデルです。TransformersとBERTの高速化は、将来的に解決すべき興味深い課題となるでしょう。 AWSはこの課題を解決するために、最適化された推論ワークロード向けに設計されたカスタムマシンラーニングチップであるAWS Inferentiaを開発しました。AWSは、AWS Inferentiaが「現行世代のGPUベースのAmazon EC2インスタンスと比較して、推論ごとのコストを最大80%低減し、スループットを最大2.3倍高める」と述べています。 AWS Inferentiaインスタンスの真の価値は、各デバイスに搭載された複数のNeuronコアを通じて実現されます。Neuronコアは、AWS Inferentia内部のカスタムアクセラレータです。各Inferentiaチップには4つのNeuronコアが搭載されています。これにより、高スループットのために各コアに1つのモデルをロードするか、低レイテンシのためにすべてのコアに1つのモデルをロードすることができます。 チュートリアル このエンドツーエンドのチュートリアルでは、Hugging Face Transformers、Amazon SageMaker、およびAWS Inferentiaを使用して、テキスト分類のBERT推論を高速化する方法を学びます。 ノートブックはこちらでご覧いただけます:sagemaker/18_inferentia_inference 以下の内容を学びます: 1. Hugging Face TransformerをAWS Neuronに変換する 2.…

CVモデルの構築と展開:コンピュータビジョンエンジニアからの教訓

コンピュータビジョン(CV)モデルの設計、構築、展開の経験を3年以上積んできましたが、私は人々がこのような複雑なシステムの構築と展開において重要な側面に十分な注力をしていないことに気づきましたこのブログ投稿では、私自身の経験と、最先端のCVモデルの設計、構築、展開において得た貴重な知見を共有します...

SalesforceのLive Call Analyticsによる統合でエージェントの生産性を向上させる

コンタクトセンターエージェントとして、生産的な顧客との会話に集中することが好きですか?それとも、さまざまなシステムに存在する顧客情報や知識記事を調べることによって気を散らされますか?私たちは皆、そういう経験をしたことがありますマルチタスクをしながら生産的な会話をすることは難しいです1つのネガティブな経験は、[...]に傷をつける可能性があります

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us