Learn more about Search Results 16 - Page 9

「仕事を守るために自動化を避ける」

自動化は怖いです私のキャリアの最初のころ、私は何かを自動化しましたが、私が去ればすぐに廃止されました人々は仕事を失うことを心配していました

「Mixtral 8x7Bについて知っていること ミストラルの新しいオープンソースLLM」

「ミストラルAIは、オープンソースのLLM(語彙・言語モデル)の領域で限界に挑戦する最も革新的な企業の一つですミストラルの最初のリリースであるミストラル7Bは、市場で最も採用されているオープンソースのLLMsの一つとなりましたA...」

「ETLにおける進化:変換の省略がデータ管理を強化する方法」

この記事では、データの民主化を可能にする二つの新しいデータ準備技術の概要を紹介します同時に、転換の負担を最小限に抑えることも目指しています

「これらの完全自動の深層学習モデルは、スマートフォンの統合を使用して、猫の苦痛指標スケール(FGS)を使用した痛み予測に使用できます」

人工知能(AI)の能力は、医療、金融、教育など、あらゆる業界に広がっています。医学や獣医学の分野では、適切な治療を施すために、痛みの特定は重要な第一歩です。特に痛みを伝えることができない人々では、代替の診断技術の使用が求められます。 従来の方法には、痛み評価システムの使用や行動反応の追跡などがありますが、主観性、妥当性の欠如、観察者のスキルとトレーニングへの依存、そして痛みの複雑な感情と動機的な側面を十分に表現できないなど、いくつかの欠点があります。特にAIを活用することで、これらの問題に取り組むことができます。 いくつかの動物種には、苦痛の重要な指標となる表情があります。苦痛のある人とそうでない人を区別するために表情の尺度が確立されています。これらは特定の顔のアクションユニット(AU)にスコアを割り当てることで機能します。しかし、現在のグリマスケールを使用して静止画やリアルタイムの痛みをスコアリングするための技術は、労働集約的で手動のスコアリングに重く依存しているという制約がいくつかあります。また、毛色、品種、年齢、性別に加えて、さまざまな自然発生的な痛みの症候群をカバーし、幅広い動物データセットを考慮した完全に自動化されたモデルの不足が指摘されています。 これらの課題を克服するため、研究チームは最近の研究で「猫の表情指標スケール(FGS)」を提案し、猫の急性疼痛を評価するための信頼性のある手法として提示しました。このスケールを構成するために5つのアクションユニットが使用され、それぞれが存在するか否かに基づいて評価されています。累積FGSスコアは、猫が不快感を経験しており、援助を必要としている可能性を示します。FGSは、使用の容易さと実用性により、急性疼痛評価においてさまざまな文脈で使用できる柔軟な手法です。 FGSスコアと顔の特徴点は、ディープニューラルネットワークと機械学習モデルを利用して予測されました。畳み込みニューラルネットワーク(CNN)が使用され、サイズ、予測時間、スマートフォン技術との統合の可能性、および正規化された二乗平均平方根誤差(NRMSE)に基づく予測パフォーマンスなどの要素に基づいて必要な予測を行うためにトレーニングされました。データ解析を改善するために、35の幾何学的記述子が並列して生成されました。 FGSスコアと顔の特徴点はXGBoostモデルにトレーニングされました。平均二乗誤差(MSE)と精度メトリックを使用して、これらのXGBoostモデルの予測パフォーマンスを評価するために使用されました。この調査で使用されたデータセットには、37の特徴点で煩雑な注釈がされた3447枚の猫の顔写真が含まれています。 研究チームは、評価の結果、ShuffleNetV2が顔の特徴点の予測において最良の選択肢として浮上し、最も成功したCNNモデルは、正規化された二乗平均平方根誤差(NRMSE)が16.76%でした。最も優れたXGBoostモデルは、FGSスコアを95.5%の驚異的な精度と0.0096の最小平均二乗誤差(MSE)で予測しました。これらの測定結果は、猫の痛みの有無を区別するための高い正確性を示しています。猫の疼痛の評価プロセスを簡素化し、改善するためにこの技術的な進展が利用できることを結論として述べられています。

内部の仕組みを明らかにする:BERTのアテンションメカニズムの深い探求

イントロダクション BERT(Bidirectional Encoder Representations from Transformers)は、トランスフォーマーモデルと教師なし事前学習を活用した自然言語処理のためのシステムです。事前学習を行うことで、BERTはマスクされた言語モデリングと文予測の2つの教師なしタスクを通じて学習を行います。これにより、BERTはゼロからではなく、特定のタスクに適応することが可能になります。基本的に、BERTは言語を理解するためのユニークなモデルを使用した事前学習されたシステムであり、多様なタスクへの適用を容易にします。この記事では、BERTのアテンションメカニズムとその動作について理解しましょう。 さらに読む:BERTとは?ここをクリック! 学習目標 BERTのアテンションメカニズムを理解する BERTにおけるトークン化の方法 BERTにおけるアテンションの重みの計算方法 BERTモデルのPython実装 この記事はデータサイエンスブログマラソンの一環として公開されました。 BERTのアテンションメカニズム まず、アテンションとは、モデルが文の重要な入力特徴により大きな重みを置く方法の一つです。 以下の例を考えて、アテンションがどのように基本的に機能するかを理解しましょう。 例1 一部の単語に対して他の単語よりも高い注意が払われる 上記の文では、BERTモデルは次の単語「fell」の予測にとって、「cat」と動詞「jumped」により重みを置くことが重要であると判断するかもしれません。「cat」がどこからジャンプしたかを知るよりも、「cat」と「jumped」を知ることが重要です。 例2 次の文を考えてみましょう。 一部の単語に対して他の単語よりも高い注意が払われる 「spaghetti」という単語を予測するために、アテンションメカニズムはスパゲッティの品質「bland」よりも動詞「eating」により重みを大きくすることを可能にします。 例3…

「チャットボットとAIアシスタントの構築」

この記事は、自然言語処理(NLP)とチャットボットフレームワークの総合ガイドを紹介します詳しくは、学んでください!

「ハグフェース上のトップ10大きな言語モデル」

イントロダクション Hugging Faceは、自然言語処理の愛好家や開発者にとって宝庫となり、さまざまなアプリケーションに簡単に統合できる事前学習済み言語モデルの幅広いコレクションを提供しています。Large Language Models(LLM)の世界で、Hugging Faceは頼りになるプラットフォームとして際立っています。この記事では、Hugging Faceで利用可能なトップ10のLLMモデルを紹介し、言語理解と生成の進化する景色に貢献します。 さあ、始めましょう! Mistral-7B-v0.1 Mistral-7B-v0.1は、70億のパラメータを誇る大規模言語モデル(LLM)です。これは事前学習済みの生成テキストモデルとして設計されており、Llama 2 13Bが検証されたドメインで設定したベンチマークを上回ることで知られています。このモデルは、グループ化されたクエリアテンションやスライディングウィンドウアテンションなどの注意機構に特定の選択を行ったトランスフォーマーアーキテクチャに基づいています。Mistral-7B-v0.1は、Byte-fallback BPEトークナイザーも組み込んでいます。 ユースケースとアプリケーション テキスト生成:Mistral-7B-v0.1は、コンテンツ作成、創造的な文章作成、または自動ストーリーテリングなど、高品質のテキスト生成を必要とするアプリケーションに適しています。 自然言語理解:高度なトランスフォーマーアーキテクチャと注意機構を備えたこのモデルは、感情分析やテキスト分類などの自然言語理解を必要とするタスクに適用することができます。 言語翻訳:生成能力と大規模なパラメータサイズを考慮すると、このモデルはニュアンスのある文脈に即した正確な翻訳が重要な言語翻訳タスクで優れたパフォーマンスを発揮するかもしれません。 研究開発:研究者や開発者は、さまざまな自然言語処理プロジェクトでのさらなる実験や微調整のためにMistral-7B-v0.1をベースモデルとして活用することができます。 このLLMにはこちらでアクセスできます。 Starling-LM-11B-alpha この大規模言語モデル(LLM)は、110億のパラメータを持ち、NurtureAIから生まれました。このモデルは、その基盤としてOpenChat 3.5モデルを利用し、AIのフィードバックからの強化学習(RLAIF)によるfine-tuningを経ています。このアプローチでは、ヒトによってラベル付けされたランキングのデータセットを利用してトレーニングプロセスを誘導します。 ユースケースとアプリケーション Starling-LM-11B-alphaは、マシンとの対話方法を革新する潜在的な大規模言語モデルであり、オープンソースの性質、優れたパフォーマンス、多様な機能を備えており、研究者、開発者、クリエイティブプロフェッショナルにとって貴重なツールです。…

機械学習によるマルチビューオプティカルイリュージョンの作成:ダイナミックな画像変換のためのゼロショット手法の探索

アナグラムは、異なる角度から見るか、ひっくり返すことで外観が変化するイメージです。これらの魅力的な多角的視覚錯覚を生成するためには、通常、視覚知覚を理解してだます必要があります。しかし、新しいアプローチが登場し、これらの魅力的な多視点光学錯視を簡単かつ効果的に生成する方法を提供しています。 視覚錯覚を作成するためのさまざまなアプローチが存在しますが、ほとんどは人間がイメージをどのように理解するかについての特定の仮定に依存しています。これらの仮定はしばしば、われわれの視覚体験の本質をときどき捉えるだけの複雑なモデルにつながります。ミシガン大学の研究者たちは、新しい解決策を提案しています。人間が物事を見る方法に基づいたモデルを構築するのではなく、テキストからイメージへの拡散モデルを使用します。このモデルは人間の知覚について何も仮定しません。データのみから学習します。 この手法は、フリップや回転時に変形するイメージなど、古典的な錯視を生成するための新しい方法を提案しています。さらに、ピクセルを並び替えると外観が変化する「視覚アナグラム」と呼ばれる新しい錯視の領域にも進出しています。これには、フリップ、回転、ジグソーパズルのような複数の解を持つより複雑な変換も含まれます。この手法は、3つや4つの視点にまで拡張され、魅力的な視覚変換の範囲が広がっています。 この手法が機能するための鍵は、ビューを注意深く選択することです。画像に適用される変換は、ノイズの統計的特性を維持する必要があります。なぜなら、このモデルはランダム、独立、同一分布のガウスノイズを仮定してトレーニングされるからです。 この手法では、画像をさまざまな視点からデノイズするために、拡散モデルを利用して複数のノイズの推定値を生成します。これらの推定値は、逆拡散プロセスの1つのステップを容易にするために組み合わされます。 この論文では、これらの視点の効果を支持する経験的根拠が示され、生成される錯視の品質と柔軟性が紹介されています。 結論として、このシンプルでありながら強力な手法は、魅力的な多視点光学錯覚を作成するための新しい可能性を開拓しています。人間の知覚に対する仮定を避け、拡散モデルの機能を活用することで、視覚変換の魅力的な世界への新たなアプローチを提供しています。フリップ、回転、ポリモーフィックジグソーパズルなど、この方法は、視覚理解を魅了し挑戦する錯視を作り出すための多目的なツールを提供します。

「エキスパートのミックスについて解説」

ミクストラル8x7Bのリリース(発表、モデルカード)により、トランスフォーマのクラスがオープンAIコミュニティで最も話題となっています。それがエキスパートの混合(Mixture of Experts、略してMoEs)です。このブログ記事では、MoEsの構成要素、トレーニング方法、および推論時の考慮事項について見ていきます。 さあ、深く掘り下げてみましょう! 目次 ミクストラルとは何ですか? MoEsの簡潔な歴史 スパース性とは何ですか? MoEsのトークンのロードバランシング MoEsとトランスフォーマ スイッチトランスフォーマ ルータZ損失によるトレーニングの安定化 エキスパートは何を学ぶのですか? エキスパートの数をスケーリングすると事前トレーニングにどのような影響を与えるのですか? MoEsの微調整 スパースMoEsと密なモデルの使用時期はいつですか? MoEsを効果的に活用するために エキスパート並列処理 能力係数と通信コスト サービングテクニック 効率的なトレーニング オープンソースのMoEs ワークのエキサイティングな方向性 いくつかのリソース…

ハグ顔(Hugging Face)での最新技術の組み合わせであるミクストラル(Mixtral)へようこそ

Mixtral 8x7bは、ミストラルが本日リリースした刺激的な大型言語モデルで、オープンアクセスモデルの最新技術基準を上回り、多くのベンチマークでGPT-3.5を凌駕しています。私たちは、MixtralをHugging Faceエコシステムに包括的に統合してのローンチをサポートすることに興奮しています🔥! 本日リリースされる機能と統合には以下があります: ハブ上のモデル、モデルカードとライセンス(Apache 2.0) 🤗 Transformers統合 推論エンドポイントとの統合 高速で効率的な本番推論のためのテキスト生成推論との統合 🤗 TRLを使用した単一のGPUでのMixtralの微調整の例 目次 Mixtral 8x7bとは何ですか 名前について プロンプト形式 分からないこと デモ 推論 🤗 Transformersを使用する テキスト生成推論を使用する 🤗…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us