Learn more about Search Results 15 - Page 9
- You may be interested
- 「アメリカでの顔認識技術は、最大の試練...
- データベースの最適化:SQLにおけるインデ...
- メタのオーディオクラフト:AIによる音声...
- 「アマゾンはAIによって書かれた本の到来...
- エッジエモーション認識:リアルタイム音...
- AIを使用して画像をビデオに変換する(Run...
- 「Pythonで出版品質のヒートマップを作成...
- StorybirdはAIの力を借りて、誰でもわずか...
- 「複数パネルの複雑な図を作成するためのM...
- ゲーム業界の皆様へ!もう奇妙な鏡は不要...
- 「AutoGPTQとtransformersを使ってLLMsを...
- このAIニュースレターは、あなたが必要と...
- 「2023年における最高のAIファイナンスツ...
- 「GPTモデルの信頼性に関する詳細な分析」
- 「ユーレカ!NVIDIAの研究によるロボット...
「最初のAIエージェントを開発する:Deep Q-Learning」
2. 全体像 3. 環境 初期の基礎 4. エージェントの実装 ニューラルアーキテクチャとポリシー 5. 環境への影響 仕上げ 6. 経験から学ぶ...
このAI論文では、EdgeSAMを紹介していますエッジデバイス上で高速で効率的な画像セグメンテーションを進めるための機械学習を発展させています
セグメントングエニシングモデル(SAM)は、オブジェクト検出と認識のために画像をセグメント化するAIパワードモデルです。それは、さまざまなコンピュータビジョンの課題に対する効果的な解決策です。しかし、SAMはエッジデバイスに最適化されていないため、性能の低下や高いリソース消費を引き起こすことがあります。シンガポール国立大学S-Labと上海人工知能研究所の研究者は、この問題に対処するためにEdgeSAMを開発しました。この最適化されたSAMのバリアントは、リソース制約のあるエッジデバイス上で高い性能を確保するために設計されています。 この研究は、視覚表現学習のための効率的なCNNとトランスフォーマーの設計に焦点を当てています。それは以前の研究で探索された方向で、知識蒸留を含む密な予測タスク(セマンティックセグメンテーションやオブジェクト検出など)における適用を認識しています。関連する研究には、ピクセルごとの特徴蒸留を実装するMobile-SAMや、YOLACTベースのインスタンスセグメンテーションモデルをトレーニングするFast-SAMがあります。特定のドメイン内での効率的なセグメンテーションに焦点を当てた以前の研究や、モバイルプラットフォーム上での端末実装に適したセグメンテーションモデルの探索についての最近の取り組みも強調されています。 この研究は、エッジデバイス(スマートフォンなど)でのリアルタイムインタラクティブセグメンテーションのために、計算上要求の厳しいSAMの展開の課題に取り組んでいます。最適化されたSAMバリアントであるEdgeSAMを導入することで、リアルタイムでの動作を実現しながらも精度を維持します。EdgeSAMは、SAMの出力マスクに合わせたプロンプトを利用したプロンプト認識型の知識蒸留アプローチを使用し、マスクデコーダーに特定のプロンプトを導入します。オンデバイスのAIアクセラレータに適した純粋なCNNベースのバックボーンを使用したEdgeSAMは、元のSAMに比べて実時間のエッジ展開で大幅な速度向上を達成します。 EdgeSAMは、性能を犠牲にすることなくエッジデバイス上で効率的に実行されるようにカスタマイズされています。EdgeSAMは、エッジデバイスに適したCNNベースのアーキテクチャに元のViTベースのSAM画像エンコーダを蒸留します。SAMの知識を完全に捉えるために、リサーチではプロンプトエンコーダとマスクデコーダの蒸留を行い、ループ内でボックスとポイントのプロンプトを使用します。データセットのバイアス問題に対応するために、軽量モジュールが追加されています。研究には、プロンプトインザループの知識蒸留と軽量リージョンプロポーザルネットワークの精緻優先度に対する削除研究なども含まれます。 EdgeSAMは、エッジデバイスでの展開時に、元のSAMに比べて40倍の速度向上を実現し、エッジデバイス上でMobile-SAMよりも14倍の性能を発揮します。さまざまなプロンプトの組み合わせやデータセットにわたってMobile-SAMを一貫して上回り、実世界のアプリケーションにおける有効性を示しています。EdgeSAMは、エッジ展開に最適化されており、NVIDIA 2080 Tiでは元のSAMと比較して40倍以上、iPhone 14ではMobileSAMと比較して約14倍の速度向上を実現します。プロンプトインザループの知識蒸留と軽量なリージョンプロポーザルネットワークは、性能を大幅に向上させます。 まとめると、この研究のキーハイライトは以下のポイントにまとめられます: EdgeSAMは、SAMの最適化バリアントです。 スマートフォンなどのエッジデバイスでリアルタイムに展開されるよう設計されています。 元のSAMと比べて、EdgeSAMは40倍速くなります。 エッジデバイス上でMobile-SAMよりも14倍の性能を発揮します。 COCOおよびLVISデータセットでmIoUsを大幅に向上させます。 EdgeSAMは、動的なプロンプトインザループ戦略とデータセットバイアスを解決するための軽量モジュールを統合しています。 研究では、さまざまなトレーニング設定、プロンプトタイプ、凍結アプローチを探索しています。 精緻優先度を活用した軽量リージョンプロポーザルネットワークも導入されています。
「CMUの研究者たちがRoboToolを公開:自然言語の指示を受け取り、シミュレーション環境と実世界のロボットを制御するための実行可能なコードを出力するAIシステム」
カーネギーメロン大学とGoogle DeepMindの研究者が協力して、RoboToolと呼ばれるシステムを開発しました。このシステムは大規模な言語モデル(LLM)を活用して、ロボットに物理的な制約や長期的な計画に関わるタスクで創造的にツールを使用させる能力を与えます。このシステムは以下の4つの主要なコンポーネントで構成されています: 自然言語の解釈を行うアナライザー 戦略を生成するプランナー パラメータを計算する計算機 計画を実行可能なPythonコードに変換するコーダー GPT-4を使用したRoboToolは、従来のタスクとモーションプランニングの方法に比べて、複雑なロボティクスタスクに対する柔軟で効率的かつユーザーフレンドリーなソリューションを提供することを目指しています。 この研究は、ロボットがツールを創造的に使用するという課題に取り組んでおり、動物がツールを使用する際の知性に類似したものです。これは、ロボットがツールを単に予定された目的のために使用するだけでなく、柔軟な解決策を提供するために創造的かつ非伝統的な方法でツールを使用することの重要性を強調しています。従来のタスクとモーションプランニング(TAMP)の方法は、暗黙の制約を伴うタスクの処理において見直す必要があり、計算コストも高くなる傾向があります。大規模な言語モデル(LLM)は、ロボティクスタスクに有益な知識をエンコードすることで有望な成果を示しています。 この研究は、ツールの選択、順次ツールの使用、および製造など、創造的なツール使用能力を評価するためのベンチマークを導入しています。提案されたRoboToolは、シミュレートおよび実世界の環境で評価され、創造的なツール使用がなければ困難なタスクの処理能力を実証しています。このシステムの成功率は、ベースラインの方法を上回り、暗黙的な制約を伴う複雑な長期的な計画タスクの解決における効果を示しています。 評価は、以下の3種類のエラーを計算することで行われました: ツール使用エラーは、正しいツールが使用されているかを示します 論理エラーは、ツールの誤った順序での使用や提供された制約の無視などの計画エラーに焦点を当てます 数値エラーは、誤った目標位置の計算や間違ったオフセットの追加などの計算エラーを含みます アナライザーを使用しないRoboToolは、大きなツール使用エラーがあり、計算機を使用しないRoboToolは、ロボツールと比べて大きな数値エラーがあります。これは、それぞれの役割がモデルにおいて果たしていることを示しています。 まとめると、言語モデルを活用したRoboToolは、暗黙的な物理的な制約を持つ長期的な計画問題を解決する能力を持つ創造的なロボットツールユーザーです。このシステムのキー概念の識別、創造的な計画の生成、パラメータの計算、実行可能なコードの生成は、創造的なツール使用が必要な複雑なロボティクスタスクの処理に貢献しています。
「高次元におけるデータの驚くべき挙動」
リチャード・ファインマンという有名な物理学者はかつて、「量子力学を理解している人なんていない」と述べていました彼のインタビュー「リチャード・ファインマンと一緒に想像しよう」という題名の中で彼は触れました
「CMUとマックス・プランク研究所の研究者が、画期的なAI手法「WHAM」を発表:ビデオからの正確かつ効率的な3D人間動作推定」
3Dヒューマンモーション再構築は、三次元で人間の動きを正確にキャプチャしてモデル化する複雑なプロセスです。カメラが動いている実世界の環境でキャプチャされたビデオは、足の滑りなどの問題がしばしば含まれており、この作業はさらに困難になります。しかし、カーネギーメロン大学とマックスプランクインテリジェントシステム研究所の研究者チームは、WHAM(World-grounded Humans with Accurate Motion)という手法を開発し、これらの課題に対応し、正確な3Dヒューマンモーション再構築を実現しました。 この研究では、画像から3Dヒューマンポーズと形状を回復するための2つの手法、モデルフリーとモデルベースのアプローチを見直しています。統計的なボディモデルのパラメータを推定するために、モデルベースの手法でディープラーニング技術の使用を強調しています。既存のビデオベースの3D HPS手法では、さまざまなニューラルネットワークアーキテクチャを介して時間的な情報を組み込んでいます。一部の方法では、慣性センサーなどの追加のセンサーを使用していますが、これらは侵入的な場合があります。WHAMは、3Dヒューマンモーションとビデオコンテキストを効果的に組み合わせ、事前知識を活用し、グローバル座標系で正確な3D人間活動の再構築を実現することで注目されています。 この研究では、単眼ビデオから3Dヒューマンポーズと形状を精度良く推定する際の課題に取り組み、グローバル座標の一貫性、計算効率、現実的な足-地面接触を強調しています。WHAMは、2Dキーポイントを3Dポーズに変換するためのモーションエンコーダ-デコーダネットワーク、時間的な手がかりのための特徴結合器、および足接触を考慮したグローバルモーション推定のための軌跡リファインメントネットワークを組み合わせて、AMASSモーションキャプチャとビデオデータセットを活用しています。これにより、非平面表面における精度が向上し、足の滑りが最小限に抑えられます。 WHAMはオンライン推論と正確な3Dモーション再構築のために単方向RNNを使用し、コンテキスト抽出のためのモーションエンコーダとSMPLパラメータ、カメラの移動、足-地面接触確率のためのモーションデコーダを備えています。モーションコンテキストの抽出にはバウンディングボックスの正規化手法を活用しています。ヒューマンメッシュリカバリで事前にトレーニングされた画像エンコーダは、フィーチャインテグレータネットワークを介して画像特徴とモーション特徴をキャプチャし統合します。軌跡デコーダはグローバル方向を予測し、リファインメントプロセスは足の滑りを最小化します。 WHAMは、合成AMASSデータでトレーニングされ、評価において既存の手法を凌駕しています。 https://arxiv.org/abs/2312.07531 WHAMは、現在の最先端の手法を凌駕し、フレームごとおよびビデオベースの3Dヒューマンポーズと形状の推定において優れた精度を示しています。WHAMは、モーションコンテキストと足接触情報を活用し、足の滑りを最小限に抑え、国際的な調整を向上させることで、正確なグローバル軌道推定を実現しています。この手法は、2Dキーポイントとピクセルの特徴を統合することで、3Dヒューマンモーション再構築の精度を向上させています。野外のベンチマークによる評価では、MPJPE、PA-MPJPE、PVEなどのメトリクスにおいてWHAMの優れた性能が示されています。 まとめると、この研究の主なポイントは以下の通りです: WHAMは、3Dヒューマンモーションとビデオコンテキストを組み合わせる革新的な手法を導入しました。 この手法は、3Dヒューマンポーズと形状の回帰を向上させます。 グローバル軌道推定フレームワークには、モーションコンテキストと足接触を組み込んでいます。 この手法は、足の滑りの課題に取り組んでおり、非平面の表面において正確な3Dトラッキングを保証します。 WHAMのアプローチは、3DPW、RICH、EMDBなどの多様なベンチマークデータセットで優れたパフォーマンスを発揮します。 この手法は、グローバル座標で効率的なヒューマンポーズと形状の推定を行います。 特徴統合と軌跡リファインメントにより、モーションとグローバル軌道の精度が大幅に向上します。 有益な除去研究によって、この手法の精度が検証されています。
Amazon SageMaker Studioで生産性を向上させる:JupyterLab Spacesと生成AIツールを紹介
「Amazon SageMaker Studioは、機械学習(ML)開発における広範なセットの完全に管理された統合開発環境(IDE)を提供していますこれには、JupyterLab、Code-OSS(Visual Studio Codeオープンソース)に基づいたCode Editor、およびRStudioが含まれていますそれは、データの準備から構築・トレーニングまでの各ステップのための最も包括的なツールのアクセスを提供します...」
「NYUとGoogle AIの研究者が、機械学習の先進的な演繹的推論のフロンティアを探る」
多くの割引ルールの使用とサブプルーフの構築により、証明の複雑さは医療診断や定理の証明などの多くの論理推論の課題において無限に発展することができます。巨大な証明領域のため、すべてのサイズの保証をカバーするためのデータを見つけることは実際的ではありません。したがって、基本的な証明から始めて、一般的な推論モデルはより複雑な証明へと拡張することができるはずです。 NYUとGoogle AIの研究者のチームは、インコンテキストの学習(ICL)と思考連鎖(CoT)のプロンプトを使用してトレーニングされた場合、LLMsが論理的な推論を行うことができることを実証しました。過去の研究では、モーダスポネンスなどの一部の割引ルールが主な焦点でした。評価もデモンストレーション中であり、テストケースはインコンテキストのデモンストレーションと同じ分布から抽出されたものです。 LLMsがデモンストレーションよりも洗練された証明を一般化できる能力は、ニューヨーク大学、Google、ボストン大学の研究者による新しい研究のテーマです。学者は証明を以下の3つの次元で分類します: デモンストレーションの各ステージで使用される前提の数。 証明を構成する一連の手順の長さ。 使用される割引ルール。 証明の総サイズはこれらの3つの次元の関数です。 このグループは、LLMsの一般的な論理的推論能力を評価するために、以前の研究を2つの重要な点で拡張しています。モーダスポネンス以外の割引ルールもマスターしているかどうかをテストします。彼らの推論能力は次の2つの方法でテストされます: 深度と幅の一般化では、インコンテキストの例よりも長い証明に対する推論が行われます。 構成的一般化では、1つの証明で多くの割引ルールを使用します。 彼らの研究によると、基本的な例を提示することで、論理的な推論タスクはインコンテキストの学習から最も利益を得ることができます。モデルが適合しすぎないようにするためには、インコンテキストの例に、証明において未知の割引の原則(例:ケースによる証明や反証による証明など)が含まれる必要があります。さらに、これらの例には迷彩要素も含まれている必要があります。 研究結果によると、CoTはLLMsにおける組成的証明へのOOB推論を引き起こすことができます。これらのLLMsには、スケールとトレーニング目標が異なるGPT-3.5 175B、PaLM 540B、LLaMA 65B、FLAN-T511Bが含まれています。この発見は驚くべきものであり、LLMsには組成的一般性がないとする文献の豊富さを考えると意外です。ICLは、インコンテキストのサンプルに対する監督学習とは異なる方法で一般化します。テスト例と同じ分布からのインコンテキストの例を与えることは明らかに悪影響です。たとえば、インコンテキストの例に特定の割引ルールが組み込まれている場合、研究者は時折、組成的証拠へのより高度な一般化が見られました。 事前学習では、モデルに仮説的なサブプルーフを作成させることはありません。具体的な例がないと、LLMsは特定の割引ルール(例:ケースによる証明や反証による証明など)を一般化することはできません。モデルのサイズとパフォーマンスの関係は弱いです。指導の調整とより長い事前学習により、より小さなモデル(最小ではなく比較可能なもの)がより大きなモデルと競合することができます。 ICLとCoTのトリガリングプロセスをさらに理解するために、研究者は今後の調査において重要な領域に注目しています。彼らは、最良のインコンテキストの例が、テスト例自体とは異なる分布から得られることを発見しました。ベイズ推論と勾配降下はこれを考慮していません。彼らは、テストケースがやや洗練されているにもかかわらず、よりシンプルな例がより良く機能するかどうかを調査することに興味を持っています。具体的なインスタンスからの外挿をさらに特徴づけるためには、追加の研究が必要です。
「LangChainとは何ですか?利用事例と利点」
LangChainはプログラマが大規模言語モデルを用いてアプリケーションを開発するための人工知能フレームワークです。ライブラリはPythonとTypeScript / JavaScriptで利用でき、開発者にとって多目的に活用できるものとなっています。テンプレートは参照アーキテクチャを提供し、アプリケーションの出発点として使用できます。LangChainフレームワークは開発から製品化、展開まで、アプリケーションのライフサイクルを効率化します。LangChainは、ステップごとに情報を求めることでチャットボットや質問応答システムなどのアプリケーションを構築するために開発者が利用することができます。また、開発者同士がお互いを支援しアイデアを共有するコミュニティも提供されています。 https://www.langchain.com/ 用途 LangChainには、自然言語を使用してSQLデータベースと対話するための機能があります。これにより、より人間らしい方法で質問したりコマンドを与えたりすることができ、LangChainがそれをSQLクエリに変換します。たとえば、先週のトップパフォーマンスを発揮した店舗を知りたい場合、LangChainにSQLクエリを生成してもらうことができます。 LangChainは、複雑なSQLクエリを手動で書くことなくデータベースとやり取りすることができる便利な機能を持っています。データベースとの会話のような感覚で、必要な情報を簡単に取得することができます。この機能により、データベースのデータに基づいて質問に答えることができるチャットボットの作成や、データ分析のためのカスタムダッシュボードの作成など、可能性が広がります。SQLデータベースに格納されたエンタープライズデータを扱う開発者にとって強力なツールです。 https://python.langchain.com/assets/images/sql_usecase-d432701261f05ab69b38576093718cf3.png 特徴 1. データの認識:LangChainは外部のデータソースと接続することで、言語モデルとの対話をより興味深くコンテキスト豊かなものにすることができます。 2. 代行的:LangChainを使用することで、言語モデルは単なる応答者にとどまらず、環境と対話することができます。これにより、アプリケーションが生き生きとしたダイナミックなものになります。 3. 簡単な統合:LangChainは使いやすく、拡張可能な標準化されたインターフェースを提供します。それはまるでアプリケーション用の共通言語を持っているようなものです。 4. スムーズな会話:効率的にプロンプトを処理することにより、言語モデルとの会話がスムーズで効果的に行えます。 5. オールインワンハブ:貴重なリソースを一箇所にまとめることで、開発者が必要なものを見つけてLangChainアプリケーションを作成し、公開するのが容易になります。 6. 見て学ぶ:LangChainは開発者が作成したチェーンとエージェントを視覚化することができます。異なるアイデア、プロンプト、モデルで実験することができます。 https://miro.medium.com/v2/resize:fit:1100/format:webp/1*05zEoeNU7DVYOFzjugiF_w.jpeg 利点 1.…
スタンフォード大学とセールスフォースAIの研究者が「UniControl」という統合的な拡散モデルを発表:AI画像生成における高度な制御のための統一されたモデル
生成型の基礎モデルは、特定のタイプの入力データに似た新しいデータを生成するために設計された人工知能モデルのクラスです。これらのモデルは、自然言語処理、コンピュータビジョン、音楽生成など、さまざまな分野で使用されることがあります。彼らは、トレーニングデータから基礎となるパターンや構造を学び、その知識を使用して新しい似たようなデータを生成します。 生成型の基礎モデルは、画像合成、テキスト生成、推薦システム、薬物探索など、さまざまな応用があります。彼らは常に進化し、生成能力の向上、より多様で高品質な出力の生成、可制御性の向上、および使用に関連する倫理的な問題の理解など、その応用能力を向上させるために研究者が取り組んでいます。 Stanford大学、Northeastern大学、Salesforce AI研究所の研究者たちは、UniControlを開発しました。これは、野生での制御可能なビジュアル生成のための統一拡散モデルであり、言語とさまざまな視覚条件を同時に扱うことができます。UniControlは、複数のタスクを同時に処理し、さまざまな視覚条件をユニバーサルな表現空間にエンコードし、タスク間で共通の構造を探求する必要があります。UniControlは、他のタスクや言語プロンプトから幅広い視覚条件を受け取る必要があります。 UniControlは、視覚要素が主な役割を果たし、言語のプロンプトがスタイルと文脈を指示することにより、ピクセルパーフェクトな精度で画像の生成を提供します。研究チームは、UniControlがさまざまな視覚シナリオを管理する能力を向上させるために、事前学習されたテキストから画像への拡散モデルを拡大しました。さらに、彼らはタスクに関する認識能力を持つHyperNetを組み込み、異なる視覚条件に基づいて複数の画像生成タスクに適応することができるようにしました。 彼らのモデルは、ControlNetよりも3Dジオメトリガイドの深さマップや表面法線の微妙な理解を示しています。深さマップ条件により、より正確な出力が生じます。セグメンテーション、openpose、および物体のバウンディングボックスのタスク中、彼らのモデルによって生成された画像は、ControlNetによって生成された画像よりも与えられた条件によりよく整列し、入力プロンプトに対して高い忠実度を確保します。実験結果は、UniControlが同等のモデルサイズを持つ単一タスク制御法の性能をしばしば上回ることを示しています。 UniControlは、ControlNetのさまざまな視覚条件を統合し、新たに見たことのないタスクでゼロショット学習を実行することができます。現在のところ、UniControlは単一の視覚条件のみを受け入れるが、複数のタスクを同時に実行し、ゼロショット学習も可能です。これは、その汎用性と広範な採用の可能性を示しています。 ただし、彼らのモデルはまだ拡散ベースの画像生成モデルの制限を継承しています。具体的には、研究者のトレーニングデータはLaion-Aestheticsデータセットの一部から取得されたものであり、データバイアスがかかっています。UniControlは、バイアスのある、有毒な、性的な、または他の有害なコンテンツの作成をブロックするために、より良いオープンソースのデータセットが利用可能であれば改善することができます。
リトリーバル・オーグメンテッド・ジェネレーションを使用して、安定した拡散プロンプトを改善しましょう
テキストから画像を生成することは、メディアやエンターテイメント、ゲーム、ECサイトの商品ビジュアライゼーション、広告やマーケティング、建築設計やビジュアライゼーション、芸術創作、医療画像など、さまざまな分野で応用される急速に成長している人工知能の分野ですStable Diffusionは、数秒で高品質な画像を作成する力を与えるテキストから画像へのモデルです11月には[…]
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.