Learn more about Search Results 調査 - Page 9

「ウェアラブルデータによるコロナ感染予測」

消費者用ウェアラブルデバイスと医療用ウェアラブルデバイスの収斂は近いのか?

UCバークレーの研究者たちは、LLMCompilerを紹介しました:LLMの並列関数呼び出しパフォーマンスを最適化するLLMコンパイラ

以下は、UCバークレー、ICSI、およびLBNLの研究チームが開発したLLMCompilerというフレームワークです。このフレームワークは、LLMの効率と精度を向上させるために設計されており、マルチファンクションコーリングタスクの遅延と不正確さを解決します。LLMCompilerは、LLMプランナー、タスクフェッチングユニット、エグゼキュータのコンポーネントを通じて関数呼び出しの並列実行を可能にします。 LLMCompilerは、マルチファンクションタスクにおける効率と精度を向上させるLLMのフレームワークです。LLMプランナー、タスクフェッチングユニット、エグゼキュータから構成されるLLMCompilerは、ベンチマーキングにおいてReActやOpenAIの並列関数呼び出し機能よりも優れた性能を発揮し、一貫したレイテンシの高速化と精度の改善を示します。LLAMA-2やOpenAIのGPTモデルのようなオープンソースモデルと互換性があり、LLMの知識の限界や算術スキルなどの制約に対処し、関数呼び出しの実行に最適化されたソリューションを提供します。このフレームワークはオープンソースであり、さらなる研究と開発を容易にします。 LLMの進化により、コンテンツ生成の能力を超えて関数呼び出しの実行が可能になりました。LLMプランナー、タスクフェッチングユニット、エグゼキュータから構成されるLLMCompilerは、関数呼び出しのオーケストレーションを最適化します。ベンチマーキングの結果、ReActやOpenAIの並列関数呼び出しと比較して一貫したレイテンシ、コスト、精度の改善が示されました。 LLMCompilerは、LLMにおける関数呼び出しの並列化を可能にするフレームワークです。LLMプランナー、タスクフェッチングユニット、エグゼキュータから成り立っており、LLMプランナーは実行戦略を策定し、タスクフェッチングユニットはタスクをディスパッチして更新し、エグゼキュータはそれらを並列実行します。LLAMA-2やOpenAIのGPTなどのオープンソースモデルと互換性があり、LLMにおけるマルチファンクション呼び出しタスクを効率的にオーケストレーションするLLMCompilerは、ReActに比べてレイテンシの高速化、コスト削減、精度の改善を実現します。動的なリプランニングをサポートすることで適応的な実行が可能であり、オープンソースのフレームワークはLLMにおけるマルチファンクション呼び出しタスクの効率的なオーケストレーションを提供します。 複雑な依存関係や動的なリプランニングのニーズを含むさまざまなタスクでベンチマークが行われ、LLMCompilerは一貫してReActを上回りました。レイテンシの高速化で最大3.7倍、コスト削減で最大6.7倍、精度の改善で9%の向上を実現しました。Game of 24のベンチマークでは、LLMCompilerはTree-of-Thoughtsに比べて2倍の高速化を達成し、OpenAIの並列関数呼び出し機能を最大1.35倍のレイテンシの向上で上回りました。オープンソースのコードは、さらなる探索と開発を容易にします。 LLMCompilerは、LLMにおける並列関数呼び出しの効率、コスト、精度を大幅に改善する有望なフレームワークです。既存のソリューションを上回り、LLMを使用した大規模タスクの効率的かつ正確な実行の可能性を秘めています。そのオープンソースの性質により、利点を活用したい開発者にとってもアクセス可能です。 LLMに焦点を当てたオペレーティングシステムの観点から、LLMCompilerをさらに探求することが推奨されます。計画と実行のレイテンシを考慮しながら、LLMCompilerによるスピードアップの可能性を調査することが望まれます。LLMCompilerに並列関数呼び出しを組み込むことは、LLMを使用した複雑なタスクの効率的な実行に有望です。LLMCompilerの継続的な開発と探求は、LLMベースのソフトウェアの進展に貢献することができます。

「仕事を守るために自動化を避ける」

自動化は怖いです私のキャリアの最初のころ、私は何かを自動化しましたが、私が去ればすぐに廃止されました人々は仕事を失うことを心配していました

このAI論文は、コントロール可能なマルチビュー画像生成および3Dコンテンツ作成を革新するニューラルネットワークアーキテクチャー、MVControlを紹介しています

最近、2D画像制作の驚くべき進展がありました。テキストの入力プロンプトにより、高精細なグラフィックスを簡単に生成することができます。テキストから画像の生成に成功することは稀であり、3Dトレーニングデータが必要なため、テキストから3Dへの移行は難しいです。拡散モデルと微分可能な3D表現の良い性質により、最近のスコア蒸留最適化(SDS)ベースの手法では、事前学習済みの大規模テキストから画像を生成するモデルから3D知識を抽出し、大量の3Dデータで完全に学習する代わりに、印象的な結果を達成しています。DreamFusionは、3Dアセットの作成に新たなアプローチを導入した模範的な研究です。 過去1年間で、2Dから3Dへの蒸留パラダイムに基づいて方法論が急速に進化してきました。複数の最適化段階を適用することで、生成品質を改善するための多くの研究が行われており、3D表現の前に拡散を最適化したり、スコア蒸留アルゴリズムをさらに精密化したり、パイプライン全体の詳細を向上させたりしています。これらの手法は細かいテクスチャを生成できますが、2Dの拡散先行は依存していないため、生成された3Dコンテンツの視点の一貫性を確保することは困難です。そのため、複数のビュー情報を事前学習済みの拡散モデルに強制的に組み込むための試みがいくつか行われています。 ベースモデルは制御ネットワークと統合され、制御されたテキストからマルチビュー画像の生成が可能になります。同様に、研究チームは制御ネットワークのみを訓練し、MVDreamの重みはすべて凍結されています。研究チームは実験的に、相対姿勢条件が条件画像に関してテキストからマルチビューの生成を制御するためにより良い結果をもたらすことを発見しました。これに対して、MVDreamが絶対座標系で記述されたカメラの姿勢で訓練されている場合でも、事前学習済みのMVDreamネットワークの記述とは異なります。さらに、視点の一貫性は、シングルイメージの作成に対応する条件付けメカニズムを持つ2D ControlNetの制御ネットワークをベースモデルとの相互作用に直接採用することで容易に達成できます。 これらの問題に対処するために、浙江大学、西湖大学、同济大学の研究チームは、制御ネットワークを基にした独自の条件付けテクニックを作成し、制御されたテキストからマルチビューの生成を提供するために十分に成功したControlNetアーキテクチャを提案しました。幅広い2DデータセットLAIONと3DデータセットObjaverseの一部を共同で使用してMVControlを訓練しました。この研究では、エッジマップを条件として使用することを調査しましたが、彼らのネットワークは深度マップ、スケッチ画像など、さまざまな種類の入力状況を活用する能力に制約はありません。訓練が終了すると、研究チームはMVControlを使用して制御されたテキストから3Dアセットの生成に3D先行を提供することができます。具体的には、MVControlネットワークと事前学習済みのStable-Diffusionモデルに基づくハイブリッド拡散先行が使用されます。細かいステップでは、ベースモデルから十分なジオメトリを得た段階でのテクスチャの最適化のみが行われます。包括的なテストにより、提案された手法が入力条件画像と書かれた説明を使用して、高精度で細かい制御が可能なマルチビュー画像と3Dコンテンツを生成できることが示されています。 まとめると、以下が彼らの主な貢献です。 ・ネットワークが訓練された後、SDS最適化を介した制御されたテキストから3Dコンテンツ合成にハイブリッド拡散の一部として使用できます。 ・独自のネットワーク設計を提案し、細かい制御が可能なテキストからマルチビュー画像の生成を実現します。 • 彼らのアプローチは、入力条件画像とテキストのプロンプトによって細かく制御されることができる高精度なマルチビュー画像と3Dアセットを生成することができます。これは、広範な実験結果によって示されています。 • SDS最適化による3Dアセットの生成に加えて、彼らのMVControlネットワークは、3Dビジョンとグラフィックのコミュニティでさまざまなアプリケーションに役立つ可能性があります。

「これらの完全自動の深層学習モデルは、スマートフォンの統合を使用して、猫の苦痛指標スケール(FGS)を使用した痛み予測に使用できます」

人工知能(AI)の能力は、医療、金融、教育など、あらゆる業界に広がっています。医学や獣医学の分野では、適切な治療を施すために、痛みの特定は重要な第一歩です。特に痛みを伝えることができない人々では、代替の診断技術の使用が求められます。 従来の方法には、痛み評価システムの使用や行動反応の追跡などがありますが、主観性、妥当性の欠如、観察者のスキルとトレーニングへの依存、そして痛みの複雑な感情と動機的な側面を十分に表現できないなど、いくつかの欠点があります。特にAIを活用することで、これらの問題に取り組むことができます。 いくつかの動物種には、苦痛の重要な指標となる表情があります。苦痛のある人とそうでない人を区別するために表情の尺度が確立されています。これらは特定の顔のアクションユニット(AU)にスコアを割り当てることで機能します。しかし、現在のグリマスケールを使用して静止画やリアルタイムの痛みをスコアリングするための技術は、労働集約的で手動のスコアリングに重く依存しているという制約がいくつかあります。また、毛色、品種、年齢、性別に加えて、さまざまな自然発生的な痛みの症候群をカバーし、幅広い動物データセットを考慮した完全に自動化されたモデルの不足が指摘されています。 これらの課題を克服するため、研究チームは最近の研究で「猫の表情指標スケール(FGS)」を提案し、猫の急性疼痛を評価するための信頼性のある手法として提示しました。このスケールを構成するために5つのアクションユニットが使用され、それぞれが存在するか否かに基づいて評価されています。累積FGSスコアは、猫が不快感を経験しており、援助を必要としている可能性を示します。FGSは、使用の容易さと実用性により、急性疼痛評価においてさまざまな文脈で使用できる柔軟な手法です。 FGSスコアと顔の特徴点は、ディープニューラルネットワークと機械学習モデルを利用して予測されました。畳み込みニューラルネットワーク(CNN)が使用され、サイズ、予測時間、スマートフォン技術との統合の可能性、および正規化された二乗平均平方根誤差(NRMSE)に基づく予測パフォーマンスなどの要素に基づいて必要な予測を行うためにトレーニングされました。データ解析を改善するために、35の幾何学的記述子が並列して生成されました。 FGSスコアと顔の特徴点はXGBoostモデルにトレーニングされました。平均二乗誤差(MSE)と精度メトリックを使用して、これらのXGBoostモデルの予測パフォーマンスを評価するために使用されました。この調査で使用されたデータセットには、37の特徴点で煩雑な注釈がされた3447枚の猫の顔写真が含まれています。 研究チームは、評価の結果、ShuffleNetV2が顔の特徴点の予測において最良の選択肢として浮上し、最も成功したCNNモデルは、正規化された二乗平均平方根誤差(NRMSE)が16.76%でした。最も優れたXGBoostモデルは、FGSスコアを95.5%の驚異的な精度と0.0096の最小平均二乗誤差(MSE)で予測しました。これらの測定結果は、猫の痛みの有無を区別するための高い正確性を示しています。猫の疼痛の評価プロセスを簡素化し、改善するためにこの技術的な進展が利用できることを結論として述べられています。

「チャットボットとAIアシスタントの構築」

この記事は、自然言語処理(NLP)とチャットボットフレームワークの総合ガイドを紹介します詳しくは、学んでください!

UCLAとCMUの研究者が、優れた中程度範囲の天気予報のためのスキルと信頼性のあるスケーラブルなトランスフォーマーニューラルネットワーク「ストーマー」を紹介しました

現在、科学と社会が直面している主な問題の一つは天気予報です。正確な天気予報は、自然災害や極端な天候事象に対処し、回復するために人々が計画するのに重要な役割を果たしており、気候変動への懸念が高まる中で環境をよりよく理解するために研究者を支援しています。数値天気予報(NWP)モデルは、大気科学者の業務の中核です。これらのモデルは、熱力学と流体力学を説明する微分方程式のシステムを使用し、時間を経て結合されることで将来の予測を作成します。NWPモデルは、放射や雲物理学などの重要な小スケールの物理現象のパラメータ化の誤りなど、いくつかの欠点がありますが、広く使用されています。 大規模な微分方程式の統合の困難さから、数値的なアプローチは特に空間および時間の解像度を高くする場合には計算コストが非常に高くなります。さらに、これらのモデルは気候科学者の知識に依存して方程式、パラメータ化、アルゴリズムを改善するため、NWPの予測精度は追加データによっては改善されません。NWPモデルの問題に対処するため、ますます多くの人々がデータ駆動型、深層学習ベースの天気予測手法に関心を示しています。歴史的データ(ERA5再解析データセットなど)を使用して、深層ニューラルネットワークは将来の天気予測を訓練するために使用されます。これがこの手法の主たる前提です。従来のNWPモデルが数時間かかるのに対し、訓練後は数秒で予測することができます。 この分野の初期の取り組みでは、気象データと自然の画像は似たような空間構造を持つため、ResNetやUNetなどの従来のビジョンアーキテクチャを天気予測に使用しようとしました。しかし、それらのパフォーマンスは数値モデルに劣っていました。しかし、改善されたモデル設計、トレーニングレシピ、データとパワーの増加により、最近では注目すべき進展がありました。最初に実用IFCを上回ったモデルは、0.25°データ(721×1440グリッド)でトレーニングされた3D地球特有のトランスフォーマーモデルであるPangu-Weatherでした。すぐに、Keislerのグラフニューラルネットワーク設計がGraphCastによって0.25°データにスケールアップされ、Pangu-Weatherを上回る結果を示しました。 予測精度は優れているものの、現在の手法では複雑で高度にカスタマイズされたニューラルネットワークのトポロジーがしばしば使用され、抜け穴実験がほとんど行われないため、その効果の正確な要素を特定するのは困難です。たとえば、GraphCastにおける多重メッシュメッセージパッシングが効率にどの程度貢献しているのか、3D地球特有のトランスフォーマーが通常のトランスフォーマーと比べてどのような利点を持っているのかは分かりません。この分野では、これらの現行手法をより良く理解し、できれば簡素化するために統合フレームワークが必要です。また、気候や天候の予測を超える気象基礎モデルを作成することも容易になります。この研究では、適切なトレーニングの公式と組み合わせることで、簡単な設計が先端技術を上回る性能を発揮することを示しています。 UCLA、CMU、Argonne National Laboratory、およびPenn State Universityの研究者は、Stormerと呼ばれる、従来のトランスフォーマーのバックボーンにほとんどの変更を加える必要のないシンプルなトランスフォーマーモデルを提案しています。研究チームは、従来のビジョントランスフォーマー(ViT)アーキテクチャをベースにして、モデルのパフォーマンスに影響を与える3つの要素を詳細に調査しました:モデルは次の3つの要素から構成されます:(1)大気変数間の相互作用をモデル化し、入力データをトークンのシーケンスに変換する天気固有の埋め込み層、(2)モデルをランダムな間隔で天気の動態を予測するようにトレーニングするランダムなダイナミクス予測目標、(3)ロス関数において異なる圧力レベルの変数を重み付けして各圧力レベルの密度を近似する圧力加重ロス。提案されたランダムなダイナミクス予測目標は、モデルがトレーニングされた間隔のさまざまな組み合わせを使用することによって、推論中に特定のリードタイムに対して多くの予測を生成するため、1つのモデルが複数の予測を可能にします。 たとえば、6時間の予測を12回配布するか、12時間の予測を6回配布することで、3日間の予測を得ることができます。これらの予測を組み合わせることにより、特に長期のリードタイムにおいて、大きな性能向上が得られます。研究チームは、データ駆動型の天気予測のための人気のあるベンチマークであるWeatherBench 2を使用して、Stormerという提案手法を評価しました。テスト結果は、Stormerが7日後に先端の予測システムを上回り、1日から7日間の重要な大気変数の予測精度で競争力のある結果を達成していることを示しています。特に、Stormerはほぼ5倍低解像度データおよび数桁少ないGPU時間で訓練されることにより、ベースラインよりも性能が向上しています。さらに、スケーリングの研究により、モデルの容量とデータサイズを増やすとStormerの性能が継続的に向上する可能性があることが証明されました。

Google Researchがジェネレーティブな無限語彙トランスフォーマー(GIVT)を発表 – AIにおける先駆的な実数値ベクトルシークエンス

トランスフォーマーは最初に導入され、自然言語処理の主要なアーキテクチャとして急速に台頭しました。最近では、コンピュータビジョンでも非常に人気があります。Dosovitskiyらは、画像をパッチのシーケンスに分割し、それらのパッチを線形に埋め込み、その結果得られる特徴のシーケンスをトランスフォーマーエンコーダに供給することで、CNNベースのアーキテクチャに勝る効果的な画像分類器を作成する方法を示しました。セグメンテーション、検出、および分類などの多くの区別的なビジョンタスクにおいて、このアプローチは現在の標準です。ただし、生成トランスフォーマーデコーダはある事前定義された有限のボキャブラリーから離散的なトークンを消費して予測するため、画像を(非量子化された)特徴ベクトルのシーケンスにマッピングすることは、トランスフォーマーベースの画像生成には適切ではありません。 このような構造は自然言語に自然に適合し、デコーダーモデル単体では、効果的なトレーニングがインストラクターフォースと強力な連続生成モデリングを介して可能です。最近の取り組みでは、ベクトル量子化変分オートエンコーダ(VQ-VAE)を使用して画像を離散トークンのシーケンスにマッピングし、その後、トランスフォーマーデコーダを使用して潜在的な離散トークンの分布をモデル化するための手法を採用しています。このアプローチは、画像を利用した多走的生成モデルも容易にします。しかし、2段階のメソッドは画像とマルチモーダルコンテンツの作成には適していますが、いくつかの問題があります。 VQ-VAE内のボキャブラリーサイズによって、潜在的なモデリングや画像の細部調整の調整が困難になるため、潜在的なコードの情報量が減少します。また、トークンを使用して密度予測や低レベルの区別的なタスクにトークンを使用するアプリケーションの品質にも影響を与えます。ボキャブラリーサイズの拡大はこの問題の解決に役立ちますが、それによってボキャブラリーの使用が不十分になる場合があります。したがって、高品質なVQ-VAEセットアップでは、エントロピー損失やコードブックの分割などの洗練された方法に頼る必要があります。さらに、巨大なボキャブラリーは記憶容量を多く消費する埋め込み行列をもたらし、異なるモダリティのボキャブラリーが混在するマルチモーダルシナリオでは、問題が発生する可能性があります。研究チームは、これらの問題を回避するために、デコーダーモデルを変更して、離散的なトークンと、したがって、固定された有限のボキャブラリーを必要としない連続した実数値のベクトルシーケンスで動作する生成トランスフォーマーデコーダを提案しています。 特に、Google DeepMindとGoogle Researchの研究チームは、実数値のベクトルシーケンスを用いて機能する生成型無限ボキャブラリートランスフォーマー(GIVT)を提案しています。実数値のベクトルは無限ボキャブラリーと見なすことができるため、研究チームはこれをGIVTと呼んでいます。図1に示されているように、研究チームはトランスフォーマーデコーダの設計をわずかに変更しました(合計2つの変更)。1)入力では、研究チームは離散的なトークンの代わりに連続した実数値のベクトルシーケンスを線形に埋め込む。2)出力では、研究チームは有限のボキャブラリー上のカテゴリカル分布のパラメータを予測するのではなく、連続した実数値のベクトル上の連続した分布のパラメータを予測します。研究チームは、教師強制と因果関係注意マスクを使用してこのモデルをトレーニングしました。また、研究チームはMaskGITに類似した高速進行マスクバイダイレクショナルモデリングも調査しました。 図1は、連続した無限ボキャブラリーのバリエーション(右側のGIVT)を典型的な離散トークン生成トランスフォーマー(左側)と比較するための同じデコーダーモデルを使用しています。 GIVTは、入力時に斜めに並んだ連続した実数値ベクトルのシーケンスで離散トークンを置き換えます。有限のボキャブラリー上のカテゴリカル分布を予測する代わりに、GIVTは出力時に連続した実数値ベクトル上の連続した分布のパラメータを予測します。 高解像度の画像を平坦化して生成されるRGBピクセルの系列は、理論的には任意の特徴ベクトルの系列にGIVTを適用することができるものの、直接的にモデル化するのは難しい例です。それは長くて複雑な分布を持っていることもあります。したがって、研究チームはまず、ガウス事前VAEを使用して低次元の潜在空間をトレーニングし、次にGIVTでモデル化します。これは、VQ-VAEと類似した2段階のテクニックに似ています。研究チームはまた、シーケンスモデリングの文献からいくつかの推論戦略(温度サンプリングや分類器フリーガイディングなど)を転用しました。 注目すべきは、実数値トークンだけを使って、これによってVQベースの技術と同等か優れたモデルが生成されることです。以下に彼らの主な貢献を簡潔に述べます: 1. UViMを使用して、研究チームはGIVTが密な予測タスク(セマンティックセグメンテーション、深度推定、ピクチャーシンセシスなど)において、通常の離散トークン変換デコーダーよりも同等または優れたパフォーマンスを達成することを示しています。 2. 研究チームは、連続ケースにおける従来のサンプリング方法の効果(温度サンプリング、ビームサーチ、分類器フリーガイディング)の派生と有効性を導き出し、証明しました。 3. KL項の重み付けを使用して、研究チームはVAE潜在空間の正規化レベルと現れるGIVTの特性との関連性を検討しました。研究チームは、VQ-VAE文献の洗練されたトレーニング方法(潜在表現への補助損失、コードブックの再初期化、専用の最適化アルゴリズムなど)はVAEおよびGIVTのトレーニングでは使用されていないことを強調しており、単純に通常の深層学習ツールボックスのアプローチに依存していると述べています。

「AWSでMLOpsアーキテクチャを設計する方法」

ガートナーの調査によると、機械学習(ML)プロジェクトのうち、概念実証(POC)から本番まで進展するのはわずか53%ですしばしば戦略的目標と実際の成果の間にズレが生じています

「エキスパートのミックスについて解説」

ミクストラル8x7Bのリリース(発表、モデルカード)により、トランスフォーマのクラスがオープンAIコミュニティで最も話題となっています。それがエキスパートの混合(Mixture of Experts、略してMoEs)です。このブログ記事では、MoEsの構成要素、トレーニング方法、および推論時の考慮事項について見ていきます。 さあ、深く掘り下げてみましょう! 目次 ミクストラルとは何ですか? MoEsの簡潔な歴史 スパース性とは何ですか? MoEsのトークンのロードバランシング MoEsとトランスフォーマ スイッチトランスフォーマ ルータZ損失によるトレーニングの安定化 エキスパートは何を学ぶのですか? エキスパートの数をスケーリングすると事前トレーニングにどのような影響を与えるのですか? MoEsの微調整 スパースMoEsと密なモデルの使用時期はいつですか? MoEsを効果的に活用するために エキスパート並列処理 能力係数と通信コスト サービングテクニック 効率的なトレーニング オープンソースのMoEs ワークのエキサイティングな方向性 いくつかのリソース…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us