Learn more about Search Results 比較 - Page 9
- You may be interested
- バイデン政権、中国へのA.I.チップの販売...
- 構造方程式モデリングにおける複数グルー...
- 2024年のデータサイエンス向けトップ15の...
- 「サイバー攻撃により、NSF(国立科学財団...
- 「LLMアプリケーションを構築する際に知っ...
- 「Amazon Qをご紹介します:ビジネスの卓...
- AIアートのマスタリング:中間の旅とプロ...
- Apple SiliconでのCore MLを使用した安定...
- ミッドジャーニープロンプトのTシャツデザ...
- 「最高のAIプレゼンテーション生成ツール1...
- GoogleのAI研究者がMADLAD-400を紹介:419...
- 「ベイチュアン2に会おう:7Bおよび13Bの...
- 「AIを活用して国連の持続可能な開発目標...
- 「ベストのTableauコース(2023年)」
- 倫理と社会ニュースレター#4:テキストか...
このAI論文では、EdgeSAMを紹介していますエッジデバイス上で高速で効率的な画像セグメンテーションを進めるための機械学習を発展させています
セグメントングエニシングモデル(SAM)は、オブジェクト検出と認識のために画像をセグメント化するAIパワードモデルです。それは、さまざまなコンピュータビジョンの課題に対する効果的な解決策です。しかし、SAMはエッジデバイスに最適化されていないため、性能の低下や高いリソース消費を引き起こすことがあります。シンガポール国立大学S-Labと上海人工知能研究所の研究者は、この問題に対処するためにEdgeSAMを開発しました。この最適化されたSAMのバリアントは、リソース制約のあるエッジデバイス上で高い性能を確保するために設計されています。 この研究は、視覚表現学習のための効率的なCNNとトランスフォーマーの設計に焦点を当てています。それは以前の研究で探索された方向で、知識蒸留を含む密な予測タスク(セマンティックセグメンテーションやオブジェクト検出など)における適用を認識しています。関連する研究には、ピクセルごとの特徴蒸留を実装するMobile-SAMや、YOLACTベースのインスタンスセグメンテーションモデルをトレーニングするFast-SAMがあります。特定のドメイン内での効率的なセグメンテーションに焦点を当てた以前の研究や、モバイルプラットフォーム上での端末実装に適したセグメンテーションモデルの探索についての最近の取り組みも強調されています。 この研究は、エッジデバイス(スマートフォンなど)でのリアルタイムインタラクティブセグメンテーションのために、計算上要求の厳しいSAMの展開の課題に取り組んでいます。最適化されたSAMバリアントであるEdgeSAMを導入することで、リアルタイムでの動作を実現しながらも精度を維持します。EdgeSAMは、SAMの出力マスクに合わせたプロンプトを利用したプロンプト認識型の知識蒸留アプローチを使用し、マスクデコーダーに特定のプロンプトを導入します。オンデバイスのAIアクセラレータに適した純粋なCNNベースのバックボーンを使用したEdgeSAMは、元のSAMに比べて実時間のエッジ展開で大幅な速度向上を達成します。 EdgeSAMは、性能を犠牲にすることなくエッジデバイス上で効率的に実行されるようにカスタマイズされています。EdgeSAMは、エッジデバイスに適したCNNベースのアーキテクチャに元のViTベースのSAM画像エンコーダを蒸留します。SAMの知識を完全に捉えるために、リサーチではプロンプトエンコーダとマスクデコーダの蒸留を行い、ループ内でボックスとポイントのプロンプトを使用します。データセットのバイアス問題に対応するために、軽量モジュールが追加されています。研究には、プロンプトインザループの知識蒸留と軽量リージョンプロポーザルネットワークの精緻優先度に対する削除研究なども含まれます。 EdgeSAMは、エッジデバイスでの展開時に、元のSAMに比べて40倍の速度向上を実現し、エッジデバイス上でMobile-SAMよりも14倍の性能を発揮します。さまざまなプロンプトの組み合わせやデータセットにわたってMobile-SAMを一貫して上回り、実世界のアプリケーションにおける有効性を示しています。EdgeSAMは、エッジ展開に最適化されており、NVIDIA 2080 Tiでは元のSAMと比較して40倍以上、iPhone 14ではMobileSAMと比較して約14倍の速度向上を実現します。プロンプトインザループの知識蒸留と軽量なリージョンプロポーザルネットワークは、性能を大幅に向上させます。 まとめると、この研究のキーハイライトは以下のポイントにまとめられます: EdgeSAMは、SAMの最適化バリアントです。 スマートフォンなどのエッジデバイスでリアルタイムに展開されるよう設計されています。 元のSAMと比べて、EdgeSAMは40倍速くなります。 エッジデバイス上でMobile-SAMよりも14倍の性能を発揮します。 COCOおよびLVISデータセットでmIoUsを大幅に向上させます。 EdgeSAMは、動的なプロンプトインザループ戦略とデータセットバイアスを解決するための軽量モジュールを統合しています。 研究では、さまざまなトレーニング設定、プロンプトタイプ、凍結アプローチを探索しています。 精緻優先度を活用した軽量リージョンプロポーザルネットワークも導入されています。
「高次元におけるデータの驚くべき挙動」
リチャード・ファインマンという有名な物理学者はかつて、「量子力学を理解している人なんていない」と述べていました彼のインタビュー「リチャード・ファインマンと一緒に想像しよう」という題名の中で彼は触れました
モデルインサイトの視覚化:ディープラーニングにおけるGrad-CAMのガイド
イントロダクション グラジエント重み付きクラスアクティベーションマッピングは、CNNでの意思決定を可視化し理解するためのディープラーニングのテクニックです。この画期的なテクニックはCNNが行った隠れた意思決定を明らかにし、不透明なモデルを透明なストーリーテラーに変えます。これは、ニューラルネットワークの注意を引く画像の本質をスポットライトで浮き彫りにする魔法レンズと考えてください。では、どのように機能するのでしょうか? Grad-CAMは、最後の畳み込み層の勾配を分析することで、特定のクラスの各特徴マップの重要性を解読します。 Grad-CAMはCNNを解釈し、予測を明らかにし、デバッグを支援し、パフォーマンスを向上させます。クラスの識別とローカル化はできますが、ピクセル空間の詳細の強調はありません。 学習目標 CNNベースのモデルでの解釈性の重要性を理解し、透明性と説明可能性を高めます。 Grad-CAM(Grad-CAM(グラジエント重み付きクラスアクティベーションマッピング))の基礎を学び、CNNの意思決定を視覚化し解釈するための技術を理解します。 Grad-CAMの実装手順に洞察を得て、イメージ中の重要な領域をモデルの予測のためにハイライトするためのクラス活性化マップを生成することを可能にします。 Grad-CAMがCNNの予測において理解と信頼を高める実世界の応用とユースケースを探索します。 この記事はData Science Blogathonの一部として公開されました。 Grad-CAMとは何ですか? Grad-CAMは、グラジエント重み付きクラスアクティベーションマッピングの略です。これは、ディープラーニング、特に畳み込みニューラルネットワーク(CNN)で使用される技術で、特定のクラスのネットワークの予測にとって重要な入力画像の領域を理解するために使用されます。 Grad-CAMは、複雑な高パフォーマンスのCNNモデルを理解することを可能にする技術であり、精度を損なうことなく可解釈性を提供します。 Grad-CAMは、アーキテクチャの変更や再トレーニングがなく、CNNベースのネットワークのための視覚的な説明を生成するクラス識別ローカリゼーション技術として特徴付けられています。この手法は、Grad-CAMを他の視覚化手法と比較し、クラスの識別力と高解像度の視覚的説明を生成することの重要性を強調します。 Grad-CAMは、CNNの最後の畳み込み層に流れるグラジエントを分析することで、画像の重要な領域をハイライトするヒートマップを生成します。 Grad-CAMは、最後の畳み込み層の特徴マップに関連する予測クラススコアの勾配を計算することで、特定のクラスの各特徴マップの重要性を判断します。 ディープラーニングにGrad-CAMが必要な理由 Grad-CAMは、ディープラーニングモデルの解釈性の重要性に対応するために必要です。これにより、さまざまなコンピュータビジョンタスクで提供する精度を損なうことなく、これらのモデルが予測に至る方法を視覚化し理解する手段が提供されます。 +---------------------------------------+ | | |…
Amazon SageMaker Studioで生産性を向上させる:JupyterLab Spacesと生成AIツールを紹介
「Amazon SageMaker Studioは、機械学習(ML)開発における広範なセットの完全に管理された統合開発環境(IDE)を提供していますこれには、JupyterLab、Code-OSS(Visual Studio Codeオープンソース)に基づいたCode Editor、およびRStudioが含まれていますそれは、データの準備から構築・トレーニングまでの各ステップのための最も包括的なツールのアクセスを提供します...」
「NYUとGoogle AIの研究者が、機械学習の先進的な演繹的推論のフロンティアを探る」
多くの割引ルールの使用とサブプルーフの構築により、証明の複雑さは医療診断や定理の証明などの多くの論理推論の課題において無限に発展することができます。巨大な証明領域のため、すべてのサイズの保証をカバーするためのデータを見つけることは実際的ではありません。したがって、基本的な証明から始めて、一般的な推論モデルはより複雑な証明へと拡張することができるはずです。 NYUとGoogle AIの研究者のチームは、インコンテキストの学習(ICL)と思考連鎖(CoT)のプロンプトを使用してトレーニングされた場合、LLMsが論理的な推論を行うことができることを実証しました。過去の研究では、モーダスポネンスなどの一部の割引ルールが主な焦点でした。評価もデモンストレーション中であり、テストケースはインコンテキストのデモンストレーションと同じ分布から抽出されたものです。 LLMsがデモンストレーションよりも洗練された証明を一般化できる能力は、ニューヨーク大学、Google、ボストン大学の研究者による新しい研究のテーマです。学者は証明を以下の3つの次元で分類します: デモンストレーションの各ステージで使用される前提の数。 証明を構成する一連の手順の長さ。 使用される割引ルール。 証明の総サイズはこれらの3つの次元の関数です。 このグループは、LLMsの一般的な論理的推論能力を評価するために、以前の研究を2つの重要な点で拡張しています。モーダスポネンス以外の割引ルールもマスターしているかどうかをテストします。彼らの推論能力は次の2つの方法でテストされます: 深度と幅の一般化では、インコンテキストの例よりも長い証明に対する推論が行われます。 構成的一般化では、1つの証明で多くの割引ルールを使用します。 彼らの研究によると、基本的な例を提示することで、論理的な推論タスクはインコンテキストの学習から最も利益を得ることができます。モデルが適合しすぎないようにするためには、インコンテキストの例に、証明において未知の割引の原則(例:ケースによる証明や反証による証明など)が含まれる必要があります。さらに、これらの例には迷彩要素も含まれている必要があります。 研究結果によると、CoTはLLMsにおける組成的証明へのOOB推論を引き起こすことができます。これらのLLMsには、スケールとトレーニング目標が異なるGPT-3.5 175B、PaLM 540B、LLaMA 65B、FLAN-T511Bが含まれています。この発見は驚くべきものであり、LLMsには組成的一般性がないとする文献の豊富さを考えると意外です。ICLは、インコンテキストのサンプルに対する監督学習とは異なる方法で一般化します。テスト例と同じ分布からのインコンテキストの例を与えることは明らかに悪影響です。たとえば、インコンテキストの例に特定の割引ルールが組み込まれている場合、研究者は時折、組成的証拠へのより高度な一般化が見られました。 事前学習では、モデルに仮説的なサブプルーフを作成させることはありません。具体的な例がないと、LLMsは特定の割引ルール(例:ケースによる証明や反証による証明など)を一般化することはできません。モデルのサイズとパフォーマンスの関係は弱いです。指導の調整とより長い事前学習により、より小さなモデル(最小ではなく比較可能なもの)がより大きなモデルと競合することができます。 ICLとCoTのトリガリングプロセスをさらに理解するために、研究者は今後の調査において重要な領域に注目しています。彼らは、最良のインコンテキストの例が、テスト例自体とは異なる分布から得られることを発見しました。ベイズ推論と勾配降下はこれを考慮していません。彼らは、テストケースがやや洗練されているにもかかわらず、よりシンプルな例がより良く機能するかどうかを調査することに興味を持っています。具体的なインスタンスからの外挿をさらに特徴づけるためには、追加の研究が必要です。
Mixtral-8x7B スパースなエキスパートの混合理解と実行
最近の大規模言語モデル(LLM)のほとんどは、非常に似たようなニューラルアーキテクチャを使用していますたとえば、Falcon、Mistral、およびLlama 2モデルは、セルフアテンションとMLPの類似の組み合わせを使用しています...
「SQLで「NOT IN」を使用する際には注意してください」
この記事では、彼が述べたことをより具体的な例、治療法、練習問題を提供することで説明しますシンプルですよね?しかし、問題があります:「IN」と「NOT IN」は、検索時に奇妙な動作をするのです…
LLM説明性への道:なぜ私のモデルはこの出力を出したのか?
大型言語モデル(LLM)は、この前の年にたくさんの進展を見せましたGPT-4やClaude 2の最近のリリースなどがありますこれらのモデルは以前のバージョンと比較して新しい能力を発揮していますが、...
「Amazon ComprehendのためのPDFの事前ラベル付けを自動化する」
「Amazon Comprehend」はテキストデータから洞察を得るための事前トレーニング済みおよびカスタムAPIを提供する自然言語処理(NLP)サービスですAmazon Comprehendのお客様は、位置、人名、日付など、ビジネスに特有の興味のあるエンティティを抽出するためのカスタムなる名前エンティティ認識(NER)モデルをトレーニングすることができますカスタムモデルをトレーニングするには、[...]
『AWSプロトタイピングによるICL-GroupのAmazon SageMaker上でのコンピュータビジョンモデルの構築』
「これはICLとAWSの従業員が共同執筆した顧客投稿ですICLは、イスラエルに拠点を置く多国籍の製造および鉱業企業で、ユニークな鉱物に基づいた製品を製造し、主に農業、食品、エンジニアリング材料の三つの市場で人類の基本的なニーズを満たしています彼らの鉱山サイトでは、監視が必要な産業用機器が使用されています...」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.