Learn more about Search Results リーダーボード - Page 9

ポリシーグラディエント(Policy Gradient)によるPyTorchの実装

Deep Reinforcement Learning Classのユニット5、Hugging Faceと共に 🤗 ⚠️ この記事の新しい更新版はこちらで利用可能です 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learning Classの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 ⚠️ この記事の新しい更新版はこちらで利用可能です 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learning Classの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 前のユニットでは、Deep Q-Learningについて学びました。この価値ベースのDeep…

アドバンテージアクタークリティック(A2C)

ハギングフェイスとのDeep Reinforcement Learningクラスのユニット7 ⚠️ この記事の新しい更新版はこちらでご覧いただけます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learningクラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 ⚠️ この記事の新しい更新版はこちらでご覧いただけます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learningクラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 ユニット5では、最初のPolicy-BasedアルゴリズムであるReinforceについて学びました。Policy-Basedメソッドでは、価値関数を使用せずにポリシーを直接最適化することを目指します。具体的には、ReinforceはPolicy-Gradientメソッドと呼ばれるPolicy-Basedメソッドのサブクラスの一部であり、Gradient Ascentを使用して最適なポリシーの重みを推定することでポリシーを直接最適化します。 Reinforceはうまく機能することを見ました。ただし、リターンを推定するためにモンテカルロサンプリングを使用するため、ポリシーグラデーションの推定にはかなりの分散があります。 ポリシーグラデーションの推定はリターンの最も急速な増加の方向です。つまり、良いリターンにつながるアクションのポリシーウェイトを更新する方法です。モンテカルロの分散は、このユニットでさらに詳しく学びますが、分散を緩和するために多くのサンプルが必要なため、トレーニングが遅くなります。 今日はActor-Criticメソッドを学びます。これはバリューベースとポリシーベースのメソッドを組み合わせたハイブリッドアーキテクチャで、トレーニングを安定化させるためのものです: エージェントの行動方法を制御するアクター(ポリシーベースのメソッド) 取られたアクションの良さを測る評価者(バリューベースのメソッド)…

SetFit プロンプトなしで効率的なフューショット学習

SetFitは、通常のファインチューニングよりもサンプル効率が高く、ノイズに強いです。 事前学習済みの言語モデルを用いたフューショット学習は、データサイエンティストの悪夢であるほとんどラベルのないデータを扱うための有望な解決策として浮上しています 😱。 Intel LabsとUKP Labとの共同研究を通じて、Hugging FaceはSetFitを紹介できることを嬉しく思っています。SetFitは、Sentence Transformersのフューショットファインチューニングの効率的なフレームワークです。SetFitは少量のラベル付きデータで高い精度を達成します – 例えば、顧客レビュー(CR)感情データセットでクラスごとにわずか8つのラベル付きの例を使用すると、SetFitはフルトレーニングセットの3,000の例でRoBERTa Largeのファインチューニングと競争力を持ちます 🤯! 他のフューショット学習手法と比較して、SetFitにはいくつかの特徴があります: 🗣 プロンプトや口述者不要:フューショットファインチューニングの現在の技術は、例を基に言語モデルに適した形式に変換するための手作りのプロンプトや口述者が必要です。SetFitはプロンプトを一切必要とせず、わずかな数のラベル付きテキスト例から直接豊かな埋め込みを生成します。 🏎 高速トレーニング:SetFitは、高い精度を実現するためにT0やGPT-3のような大規模なモデルを必要としません。そのため、トレーニングと推論の速度は通常1桁以上速くなります。 🌎 多言語対応:SetFitはHubの任意のSentence Transformerと組み合わせて使用できるため、マルチリンガルなチェックポイントをファインチューニングするだけで、複数の言語でテキストを分類することができます。 詳細については、私たちの論文、データ、コードをご覧ください。このブログ投稿では、SetFitの動作方法と独自のモデルをトレーニングする方法について説明します。さあ、始めましょう! どのように動作するのか? SetFitは効率とシンプルさを考慮して設計されています。SetFitはまず、少数のラベル付き例(通常はクラスごとに8または16個)でSentence Transformerモデルをファインチューニングします。次に、ファインチューニングされたSentence…

MTEB 大規模テキスト埋め込みベンチマーク

MTEBは、さまざまな埋め込みタスクでテキスト埋め込みモデルのパフォーマンスを測定するための大規模ベンチマークです。 🥇リーダーボードは、さまざまなタスクで最高のテキスト埋め込みモデルの包括的なビューを提供します。 📝論文は、MTEBのタスクとデータセットについての背景を説明し、リーダーボードの結果を分析しています! 💻Githubリポジトリには、ベンチマークのためのコードとリーダーボードへの任意のモデルの提出が含まれています。 テキスト埋め込みの重要性 テキスト埋め込みは、意味情報をエンコードするテキストのベクトル表現です。コンピュータは計算を行うために数値の入力を必要とするため、テキスト埋め込みは多くのNLPアプリケーションの重要な要素です。たとえば、Googleはテキスト埋め込みを検索エンジンの動力源として使用しています。テキスト埋め込みは、クラスタリングによる大量のテキストのパターン検出や、最近のSetFitのようなテキスト分類モデルへの入力としても使用できます。ただし、テキスト埋め込みの品質は、使用される埋め込みモデルに大きく依存します。MTEBは、さまざまなタスクに対して最適な埋め込みモデルを見つけるのに役立つように設計されています! MTEB 🐋 Massive:MTEBには8つのタスクにわたる56のデータセットが含まれ、現在リーダーボード上の>2000の結果を要約しています。 🌎 Multilingual:MTEBには最大112の異なる言語が含まれています!Bitext Mining、Classification、STSにおいていくつかの多言語モデルをベンチマークにかけました。 🦚 Extensible:新しいタスク、データセット、メトリクス、またはリーダーボードの追加に関しては、どんな貢献も大歓迎です。リーダーボードへの提出やオープンな課題の解決については、GitHubリポジトリをご覧ください。最高のテキスト埋め込みモデルの発見の旅にご参加いただければ幸いです。 MTEBのタスクとデータセットの概要。多言語データセットは紫の色で表示されます。 モデル MTEBの初期ベンチマークでは、最新の結果を謳うモデルやHubで人気のあるモデルに焦点を当てました。これにより、トランスフォーマーの代表的なモデルが多く含まれています。🤖 平均英語MTEBスコア(y)対速度(x)対埋め込みサイズ(円のサイズ)でモデルをグループ化しました。 次の3つの属性にモデルを分類して、タスクに最適なモデルを簡単に見つけることをお勧めします: 🏎 最大速度 Gloveのようなモデルは高速ですが、文脈の理解が不足しており、平均MTEBスコアが低くなります。 ⚖️ 速度とパフォーマンス…

マルチリンガルASRのためのWhisperの調整を行います with 🤗 Transformers

このブログでは、ハギングフェイス🤗トランスフォーマーを使用して、Whisperを任意の多言語ASRデータセットに対して細かく調整する手順を段階的に説明します。このブログでは、Whisperモデル、Common Voiceデータセット、および細かな調整の背後にある理論について詳しく説明し、データの準備と細かい調整の手順を実行するためのコードセルと共に提供しています。説明は少ないですが、すべてのコードがあるより簡略化されたバージョンのノートブックは、関連するGoogle Colabを参照してください。 目次 はじめに Google ColabでのWhisperの細かい調整 環境の準備 データセットの読み込み 特徴抽出器、トークナイザー、およびデータの準備 トレーニングと評価 デモの作成 締めくくり はじめに Whisperは、OpenAIのAlec Radfordらによって2022年9月に発表された自動音声認識(ASR)のための事前学習モデルです。Whisperは、Wav2Vec 2.0などの先行研究とは異なり、ラベル付きの音声トランスクリプションデータで事前学習されています。具体的には、680,000時間のデータが使用されています。これは、Wav2Vec 2.0の訓練に使用されるラベルなしの音声データ(60,000時間)よりも桁違いに多いデータです。さらに、この事前学習データのうち117,000時間が多言語ASRデータです。これにより、96以上の言語に適用できるチェックポイントが生成され、その多くは低リソース言語とされています。 このような大量のラベル付きデータにより、Whisperは事前学習データから音声認識の教師ありタスクを直接学習し、音声トランスクリプションデータからテキストへのマッピングを学習します。そのため、Whisperはパフォーマンスの高いASRモデルを得るためにほとんど追加の細かい調整を必要としません。これに対して、Wav2Vec 2.0は非教師付きタスクのマスク予測で事前学習されており、音声から隠れた状態への中間的なマッピングを学習します。非教師付きの事前学習は音声の高品質な表現を生み出しますが、音声からテキストへのマッピングは学習されません。このマッピングは細かい調整中にのみ学習されるため、競争力のあるパフォーマンスを得るにはより多くの細かい調整が必要です。 680,000時間のラベル付き事前学習データにスケールされると、Whisperモデルは多くのデータセットとドメインに対して高い汎化能力を示します。事前学習されたチェックポイントは、LibriSpeech ASRのtest-cleanサブセットで約3%の単語エラーレート(WER)を達成し、TED-LIUMでは4.7%のWERで新たな最先端の結果を実現します(Whisper論文の表8を参照)。Whisperが事前学習中に獲得した多言語ASRの知識は、他の低リソース言語に活用することができます。細かい調整により、事前学習済みのチェックポイントを特定のデータセットと言語に適応させることで、これらの結果をさらに改善することができます。 Whisperは、Transformerベースのエンコーダーデコーダーモデルであり、シーケンスからシーケンスへのモデルとも呼ばれています。Whisperは、オーディオのスペクトログラム特徴のシーケンスをテキストトークンのシーケンスにマッピングします。まず、生のオーディオ入力は特徴抽出器によってログメルスペクトログラムに変換されます。次に、Transformerエンコーダーはスペクトログラムをエンコードしてエンコーダーの隠れ状態のシーケンスを形成します。最後に、デコーダーはエンコーダーの隠れ状態と以前に予測されたトークンの両方に依存して、テキストトークンを自己回帰的に予測します。図1はWhisperモデルを要約しています。 <img…

グラフ機械学習の概要

このブログ投稿では、グラフ機械学習の基礎をカバーします。 まず、グラフの定義、使用目的、および最良の表現方法について学びます。次に、人々がグラフ上で学習する方法について簡単に説明し、ニューラルメソッド(グラフの特徴を同時に探索する)から一般的にグラフニューラルネットワークと呼ばれるものまでをカバーします。最後に、グラフのためのトランスフォーマーの世界を垣間見ます。 グラフ グラフとは何ですか? 基本的に、グラフは関係でリンクされたアイテムの記述です。 グラフの例には、ソーシャルネットワーク(Twitter、Mastodon、論文と著者をリンクする引用ネットワークなど)、分子、知識グラフ(UML図、百科事典、ページ間のハイパーリンクを持つウェブサイトなど)、文を構文木として表現したもの、3Dメッシュなどがあります。したがって、グラフはどこにでも存在すると言っても過言ではありません。 グラフのアイテム(またはネットワーク)をノード(または頂点)と呼び、それらの接続をエッジ(またはリンク)と呼びます。たとえば、ソーシャルネットワークでは、ノードはユーザーであり、エッジはその接続です。分子では、ノードは原子であり、エッジは分子結合です。 ノードまたはエッジに型が付いたグラフは異種と呼ばれます(例:論文または著者のいずれかとなるアイテムを持つ引用ネットワークには型付きノードがあり、関係に型が付いたXMLダイアグラムには型付きエッジがあります)。これは単にトポロジだけで表現することはできず、追加の情報が必要です。この投稿では同種のグラフに焦点を当てています。 グラフはまた、有向(フォローネットワークのように、AがBをフォローしていることがBがAをフォローしていることを意味しない)または無向(分子のように、原子間の関係が両方の方向に進む)になります。エッジは異なるノードを接続することも、ノード自体に接続することもできますが、すべてのノードが接続される必要はありません。 データを使用する場合、最初に最適な特性(同種/異種、有向/無向など)を考慮する必要があります。 グラフはどのように使用されますか? グラフで行う可能性のあるタスクの一覧を見てみましょう。 グラフレベルでは、主なタスクは次のとおりです: グラフ生成:新しい可能性のある分子を生成するために薬剤探索で使用されます グラフの進化(与えられたグラフが時間とともにどのように進化するかを予測する):物理学でシステムの進化を予測するために使用されます グラフレベルの予測(グラフからのカテゴリ化または回帰タスク):分子の毒性を予測するなど ノードレベルでは、通常はノードの特性予測が行われます。たとえば、Alphafoldは、分子の全体的なグラフからノードの特性予測を使用して原子の3D座標を予測し、分子が3D空間でどのように折りたたまれるかを予測します。これは難しい生化学の問題です。 エッジレベルでは、エッジの特性予測または欠損エッジの予測が行われます。エッジの特性予測は、薬物の副作用予測に使用され、一対の薬物に対して副作用を予測します。欠損エッジの予測は、推薦システムで使用され、グラフ内の2つのノードが関連しているかどうかを予測します。 サブグラフレベルでは、コミュニティの検出やサブグラフの特性予測などが行われます。ソーシャルネットワークでは、コミュニティの検出を使用して人々がどのように接続されているかを判断します。サブグラフの特性予測は、旅程システム(Googleマップなど)で推定到着時間を予測するために使用されます。 これらのタスクに取り組む方法は2つあります。 特定のグラフの進化を予測する場合、すべて(トレーニング、検証、テスト)を同じ単一のグラフ上で行う転移学習の設定で作業します。この場合、単一のグラフからトレーニング/評価/テストデータセットを作成することは容易ではありませんので注意してください。ただし、異なるグラフ(別々のトレーニング/評価/テストデータセット)を使用して作業することもあります。これは帰納的な設定と呼ばれます。 グラフはどのように表現されますか? グラフを処理および操作するための一般的な方法は次のいずれかです: すべてのエッジの集合として表現する(すべてのノードの集合と補完される場合もあります)…

ハギングフェイスにおけるコンピュータビジョンの状況 🤗

弊社の自慢は、コミュニティとともに人工知能の分野を民主化することです。その使命の一環として、私たちは過去1年間でコンピュータビジョンに注力し始めました。🤗 Transformersにビジョントランスフォーマー(ViT)を含めるというPRから始まったこの取り組みは、現在では8つの主要なビジョンタスク、3000以上のモデル、およびHugging Face Hub上の100以上のデータセットに成長しました。 ViTがHubに参加して以来、多くのエキサイティングな出来事がありました。このブログ記事では、コンピュータビジョンの持続的な進歩をサポートするために何が起こったのか、そして今後何がやってくるのかをまとめます。 以下は、カバーする内容のリストです: サポートされているビジョンタスクとパイプライン 独自のビジョンモデルのトレーニング timmとの統合 Diffusers サードパーティーライブラリのサポート デプロイメント その他多数! コミュニティの支援:一つずつのタスクを可能にする 👁 Hugging Face Hubは、次の単語予測、マスクの埋め込み、トークン分類、シーケンス分類など、さまざまなタスクのために10万以上のパブリックモデルを収容しています。現在、我々は8つの主要なビジョンタスクをサポートし、多くのモデルチェックポイントを提供しています: 画像分類 画像セグメンテーション (ゼロショット)オブジェクト検出 ビデオ分類 奥行き推定 画像から画像への合成…

⚔️AI vs. AI⚔️は、深層強化学習マルチエージェント競技システムを紹介します

私たちは新しいツールを紹介するのを楽しみにしています: ⚔️ AI vs. AI ⚔️、深層強化学習マルチエージェント競技システム。 このツールはSpacesでホストされており、マルチエージェント競技を作成することができます。以下の3つの要素で構成されています: マッチメイキングアルゴリズムを使用してモデルの戦いをバックグラウンドタスクで実行するスペース。 結果を含むデータセット。 マッチ履歴の結果を取得し、モデルのELOを表示するリーダーボード。 ユーザーが訓練済みモデルをHubにアップロードすると、他のモデルと評価およびランキング付けされます。これにより、マルチエージェント環境で他のエージェントとの評価が可能です。 マルチエージェント競技をホストする有用なツールであるだけでなく、このツールはマルチエージェント環境での堅牢な評価技術でもあると考えています。多くのポリシーと対戦することで、エージェントは幅広い振る舞いに対して評価されます。これにより、ポリシーの品質を良く把握することができます。 最初の競技ホストであるSoccerTwos Challengeでどのように機能するか見てみましょう。 AI vs. AIはどのように機能しますか? AI vs. AIは、Hugging Faceで開発されたオープンソースのツールで、マルチエージェント環境での強化学習モデルの強さをランク付けするためのものです。 アイデアは、モデルを継続的に互いに対戦させ、その結果を使用して他のすべてのモデルと比較してパフォーマンスを評価し、ポリシーの品質を把握するための相対的なスキルの尺度を得ることです。従来のメトリクスを必要とせずに。 エージェントが特定のタスクや環境に提出される数が増えるほど、ランキングはより代表的になります。 競争環境での試合結果に基づいて評価を生成するために、私たちはELOレーティングシステムを基にランキングを作成することにしました。…

時間をかけて生存者を助け、機械学習を利用して競争する

2023年2月6日、トルコ南東部でマグニチュード7.7と7.6の地震が発生し、10の都市に影響を及ぼし、2月21日現在で4万2000人以上が死亡し、12万人以上が負傷しました。 地震の数時間後、プログラマーのグループが「アフェタリタ」と呼ばれるアプリケーションを展開するためのDiscordサーバーを立ち上げました。このアプリケーションは、捜索救助チームとボランティアが生存者を見つけて支援するために使用されます。このようなアプリの必要性は、生存者が自分の住所や必要なもの(救助を含む)をテキストのスクリーンショットとしてソーシャルメディアに投稿したことから生じました。一部の生存者は、自分が生きていることと救助を必要としていることを、ツイートで伝え、それにより親族が知ることができました。これらのツイートから情報を抽出する必要があり、私たちはこれらを構造化されたデータに変換するためのさまざまなアプリケーションを開発し、展開するために時間との競争をしました。 Discordサーバーに招待されたとき、私たちは(ボランティアとして)どのように運営し、何をするかについてかなりの混乱がありました。私たちは共同でモデルをトレーニングするために、モデルとデータセットのレジストリが必要でした。私たちはHugging Faceの組織アカウントを開設し、MLベースのアプリケーションを受け取り、情報を処理するためのプルリクエストを通じて共同作業しました。 他のチームのボランティアから、スクリーンショットを投稿し、スクリーンショットから情報を抽出し、それを構造化してデータベースに書き込むアプリケーションの需要があることを聞きました。私たちは、与えられた画像を取得し、まずテキストを抽出し、そのテキストから名前、電話番号、住所を抽出し、これらの情報を権限付与された当局に提供するデータベースに書き込むアプリケーションの開発を開始しました。さまざまなオープンソースのOCRツールを試した後、OCR部分には「easyocr」を使用し、このアプリケーションのインターフェースの構築には「Gradio」を使用しました。OCRからのテキスト出力は、トランスフォーマーベースのファインチューニングされたNERモデルを使用して解析されます。 アプリケーションを共同で改善するために、Hugging Face Spacesにホストし、アプリケーションを維持するためのGPUグラントを受け取りました。Hugging Face HubチームはCIボットをセットアップしてくれたので、プルリクエストがSpaceにどのように影響を与えるかを見ることができ、プルリクエストのレビュー中に役立ちました。 その後、さまざまなチャンネル(Twitter、Discordなど)からラベル付けされたコンテンツが提供されました。これには、助けを求める生存者のツイートの生データと、それらから抽出された住所と個人情報が含まれていました。私たちは、まずはHugging Face Hub上のオープンソースのNLIモデルと、クローズドソースの生成モデルエンドポイントを使用したフューショットの実験から始めました。私たちは、xlm-roberta-large-xnliとconvbert-base-turkish-mc4-cased-allnli_trというモデルを試しました。NLIモデルは特に役立ちました。候補ラベルを使用して直接推論でき、データのドリフトが発生した際にラベルを変更できるため、生成モデルはバックエンドへの応答時にラベルを作り上げる可能性があり、不一致を引き起こす可能性がありました。最初はラベル付けされたデータがなかったので、何でも動くでしょう。 最終的に、私たちは独自のモデルを微調整することにしました。1つのGPUでBERTのテキスト分類ヘッドを微調整するのに約3分かかります。このモデルをトレーニングするためのデータセットを開発するためのラベリングの取り組みがありました。モデルカードのメタデータに実験結果を記録し、後でどのモデルを展開するかを追跡するためのリーダーボードを作成しました。ベースモデルとして、bert-base-turkish-uncasedとbert-base-turkish-128k-casedを試しましたが、bert-base-turkish-casedよりも優れたパフォーマンスを発揮することがわかりました。リーダーボードはこちらでご覧いただけます。 課題とデータクラスの不均衡を考慮し、偽陰性を排除することに焦点を当て、すべてのモデルの再現率とF1スコアをベンチマークするためのスペースを作成しました。これには、関連するモデルリポジトリにメタデータタグdeprem-clf-v1を追加し、このタグを使用して記録されたF1スコアと再現率を自動的に取得し、モデルをランク付けしました。漏れを防ぐために別のベンチマークセットを用意し、モデルを一貫してベンチマークしました。また、各モデルをベンチマークし、展開用の各ラベルに対して最適な閾値を特定しました。 NERモデルを評価するために、データラベラーが改善された意図データセットを提供するために取り組んでいるため、クラウドソーシングの取り組みとしてNERモデルを評価するためのラベリングインターフェースを設定しました。このインターフェースでは、ArgillaとGradioを使用して、ツイートを入力し、出力を正しい/正しくない/曖昧などのフラグで示すことができます。 後で、データセットは重複を排除してさらなる実験のベンチマークに使用されました。 機械学習の別のチームは、特定のニーズを得るために生成モデル(ゲート付きAPIの背後)と連携し、テキストとして自由なテキストを使用し、各投稿に追加のコンテキストとしてテキストを渡すためにAPIエンドポイントを別のAPIとしてラップし、クラウドに展開しました。少数のショットのプロンプティングをLLMsと組み合わせて使用することで、急速に変化するデータのドリフトの存在下で細かいニーズに対応するのに役立ちます。調整する必要があるのはプロンプトだけであり、ラベル付けされたデータは必要ありません。 これらのモデルは現在、生存者にニーズを伝えるためにボランティアや救助チームがヒートマップ上のポイントを作成するために本番環境で使用されています。 Hugging Face Hubとエコシステムがなかったら、私たちはこのように迅速に協力し、プロトタイプを作成し、展開することはできませんでした。以下は住所認識および意図分類モデルのためのMLOpsパイプラインです。 このアプリケーションとその個々のコンポーネントには何十人ものボランティアがおり、短期間でこれらを提供するために寝ずに働きました。 リモートセンシングアプリケーション…

ファルコンはHugging Faceのエコシステムに着陸しました

イントロダクション ファルコンは、アブダビのテクノロジーイノベーション研究所が作成し、Apache 2.0ライセンスの下で公開された最新の言語モデルの新しいファミリーです。 特筆すべきは、Falcon-40Bが多くの現在のクローズドソースモデルと同等の機能を持つ、初めての「真にオープンな」モデルであることです 。これは、開発者、愛好家、産業界にとって素晴らしいニュースであり、多くのエキサイティングなユースケースの扉を開くものです。 このブログでは、ファルコンモデルについて詳しく調査し、まずそれらがどのようにユニークであるかを説明し、その後、Hugging Faceのエコシステムのツールを使ってそれらの上に構築することがどれほど簡単かを紹介します。 目次 ファルコンモデル デモ 推論 評価 PEFTによるファインチューニング 結論 ファルコンモデル ファルコンファミリーは、2つのベースモデルで構成されています:Falcon-40Bとその弟であるFalcon-7Bです。 40Bパラメータモデルは現在、Open LLM Leaderboardのトップを占めており、7Bモデルはそのクラスで最高のモデルです 。 Falcon-40BはGPUメモリを約90GB必要としますが、それでもLLaMA-65Bよりは少なく、Falconはそれを上回します。一方、Falcon-7Bは約15GBしか必要とせず、推論やファインチューニングは一般的なハードウェアでも利用可能です。 (このブログの後半では、より安価なGPUでもFalcon-40Bを利用できるように、量子化を活用する方法について説明します!) TIIはまた、モデルのInstructバージョンであるFalcon-7B-InstructとFalcon-40B-Instructを提供しています。これらの実験的なバリアントは、命令と会話データに適応された調整が行われているため、人気のあるアシスタントスタイルのタスクに適しています。 モデルを素早く試してみたい場合は、これらが最適な選択肢です。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us