Learn more about Search Results リリース - Page 9
- You may be interested
- 2023年のランダムフォレスト:パワフルな...
- 「コンテナ化されたモデルとワークロード...
- Googleはチャットボットの使用について従...
- 2023年のトップ7人工知能絵画ジェネレーター
- 広大な化学空間で適切な遷移金属を採掘する
- 「OpenAgents:野生の言語エージェントの...
- コンテンツクリエーターに必要不可欠なCha...
- 『UltraFastBERT:指数関数的に高速な言語...
- 「アメリカでデータアナリストになる方法」
- 「機械に学習させ、そして彼らが私たちに...
- 時系列分析 VARMAX-As-A-Service
- 「低コスト四足ロボットはパルクールをマ...
- コンピューティングの社会および倫理的責...
- Langchain 101 構造化データ(JSON)の抽出
- 疾病の原因を特定するための遺伝子変異の...
「AIは詐欺検出にどのように使われていますか?」
西部劇にはガンスリンガー、銀行強盗、賞金が存在しましたが、今日のデジタルフロンティアではアイデンティティ盗難、クレジットカード詐欺、チャージバックが広まっています。 金融詐欺による収益は、数十億ドル規模の犯罪企業となっています。詐欺師の手に渡る「生成AI」は、これをさらに収益化することを約束します。 世界的には、2026年までにクレジットカードによる損失は430億ドルに達する見込みです。これはニルソン・レポートによるものです。 金融詐欺は、ハッキングされたデータをダークウェブから収集してクレジットカードの盗難に利用するなど、さまざまな手法で行われます。「生成AI」を用いて個人情報をフィッシングする場合もあり、仮想通貨、デジタルウォレット、法定通貨間での資金洗浄も行われています。デジタルの裏世界にはさまざまな金融詐欺が潜んでいます。 対応するために、金融サービス企業は詐欺検出にAIを活用しています。なぜなら、これらのデジタル犯罪の多くはリアルタイムで停止し、消費者や金融企業がすぐに損失を止める必要があるからです。 では、詐欺検出にはAIはどのように活用されているのでしょうか? 詐欺検出のためのAIは、顧客の行動と関連、アカウントのパターンや詐欺特性に合致する行動の異常を検出するために、複数の機械学習モデルを使用しています。 生成AIは詐欺の共同パイロットとして活用できる 金融サービスの多くはテキストと数字を扱うものです。生成AIや大規模言語モデル(LLMs)は、意味と文脈を学習する能力を持ち、新しいレベルの出力と生産性を約束するため、産業全体に破壊的な能力をもたらします。金融サービス企業は、生成AIを活用してより賢明かつ能力の高いチャットボットを開発し、詐欺検出を改善することができます。 一方で、悪意のある者は巧妙な生成AIのプロンプトを使用してAIのガードレールを回避し、詐欺に利用することができます。また、LLMsは人間のような文章を生成することができ、詐欺師はタイプミスや文法の誤りのない文脈に沿ったメールを作成することができます。さまざまなバリエーションのフィッシングメールを素早く作成することができるため、生成AIは詐欺行為を実行するための優れた共同パイロットとなります。詐欺GPTなど、生成AIをサイバー犯罪に悪用するためのダークウェブツールもあります。 生成AIは声認証セキュリティにおける金融被害にも悪用されることがあります。一部の銀行は声認証を使用してユーザーを認証しています。攻撃者がボイスサンプルを入手することができれば、ディープフェイク技術を使用して銀行の顧客の声をクローンすることができ、このシステムを破ろうとします。声データは、スパムの電話で集めることができます。 チャットボットの詐欺は、LLMsやその他の技術を使用して人間の行動をシミュレートすることに対する懸念があります。これらはインポスター詐欺や金融詐欺に応用されるディープフェイクビデオと音声クローンのためのものです。米国連邦取引委員会はこの問題に対して懸念を表明しています。 生成AIは不正使用と詐欺検出にどのように取り組んでいるのか? 詐欺審査には強力な新しいツールがあります。マニュアル詐欺審査を担当する従業員は、ポリシードキュメントからの情報を活用するために、バックエンドでRAGを実行するLLMベースのアシスタントのサポートを受けることができます。これにより、詐欺事件がどのようなものかを迅速に判断し、プロセスを大幅に加速することができます。 LLMsは、顧客の次の取引を予測するために採用されており、支払い企業は事前にリスクを評価し、詐欺取引をブロックすることができます。 生成AIはまた、トランザクション詐欺を撲滅するために精度を向上させ、レポートを生成し、調査を減らし、コンプライアンスリスクを軽減するのに役立ちます。 不正防止のための生成AIの重要な応用例の1つとして、「合成データ」の生成があります。合成データは、詐欺検出モデルのトレーニングに使用するデータレコードの数を増やし、詐欺師が最新の手法を認識するための例のバラエティと洗練度を高めることができます。 NVIDIAは、生成AIを活用してワークフローを構築し、情報検索のために自然言語プロンプトを使用するチャットボットと仮想エージェントを作成するためのツールを提供しています。 NVIDIAのAIワークフローを活用することで、様々なユースケースに対して正確な応答を生成するためのエンタープライズグレードの機能を迅速に構築し、展開することができます。これには、ファウンデーションモデル、NVIDIA NeMoフレームワーク、NVIDIA Triton Inference Server、GPUアクセラレートベクトルデータベースが使用され、RAGによって強化されたチャットボットが展開されます。 安全性に焦点を当てた産業では、悪用されにくいように生成AIを保護するための取り組みが行われています。NVIDIAはNeMoガードレールをリリースし、OpenAIのChatGPTなどのLLMsによって動作するインテリジェントアプリケーションが正確で適切、トピックに即して安全であることを確保するために役立てています。…
BERTopic(バートピック):v0.16の特別さは何なのでしょうか?
私のBERTopicへの野望は、重要な柔軟性とモジュール性を提供することにより、トピックモデリングのための一括ショップにすることですこれは過去数年間の目標であり、リリースによって達成されました...
『ジェネラティブAIの電力消費の定量化』
更新日:2023年12月11日—アナウンスメントにおいてAMDが予想する売上高の倍増を反映するため、アナウンスメントの付録に改訂された分析Generative AIにはグラフィックス処理ユニット(GPU)が必要であり、それらはたくさん必要とされます計算が…
「なぜマイクロソフトのOrca-2 AIモデルは持続可能なAIにおいて重要な進展を示すのか?」
「マイクロソフトのOrca-2が持続可能なAIへの画期的な進歩を遂げていることを発見してください大規模な言語モデル(LLM)のエネルギー消費が激しい性質から解放されたOrca-2は、サイズよりも知的なデザインを重視することで既成概念に挑戦しますこの転換が、高度なAIを包括的で、環境負荷の少ない、影響力のあるものにする新たな可能性を示していることを学んでくださいOrca-2の意義を探り、技術の進歩と環境責任への取り組みを調和させる持続可能なAIの未来の形成における役割を探ってください」
ミストラルAIは、パワフルなスパースな専門家の
人工知能の進展に向けて、革新的なオープンモデルを提供するパイオニアであるMistral AIが、Mixtral 8x7Bを発表しました。この高品質のスパースなエキスパート混合(SMoE)モデルは、オープンウェイトを備え、この分野での重要な飛躍を示しています。伝統的なアーキテクチャやトレーニングパラダイムを逸脱し、Mistral AIは開発者コミュニティに独自のモデルを提供することで、イノベーションと多様なアプリケーションを促進することを目指しています。 Mixtral 8x7Bの概要 Mixtral 8x7Bは、デコーダーのみのモデルであり、スパースなエキスパート混合ネットワークを活用しています。8つの異なるパラメータグループを持ち、フィードフォワードブロックは各層で2つのエキスパートを動的に選択してトークンを処理し、それらの出力を加算的に組み合わせます。この革新的なアプローチにより、モデルのパラメータ数が46.7Bに増加し、コストとレイテンシの制御を維持しながら、12.9Bモデルの速度とコスト効率で動作します。 スパースアーキテクチャによるフロンティアの拡大 Mistral AIは、Mixtralによるスパースアーキテクチャの使用を先駆けており、オープンモデルの限界を押し広げることへの取り組みを示しています。Mixtral内のルーターネットワークは、入力データを効率的に処理し、トークンごとに特定のパラメータグループを選択します。このパラメータの戦略的な利用は、スピードやコストを損なうことなく、性能を向上させます。これにより、MixtralはAIの領域で強力な競合相手となります。 パフォーマンスメトリクス Mixtralは、Llama 2モデルおよびGPT3.5ベースモデルと比較してテストされています。結果は、Mixtralの実力を示し、Llama 2 70Bを上回り、さまざまなベンチマークでGPT3.5と同等以上の性能を発揮しています。品質対推論予算のトレードオフグラフは、Mixtral 8x7Bの効率性を示しており、Llama 2と比較して非常に効率的なモデルの一部となっています。 幻想、バイアス、言語の習得 Mixtralのパフォーマンスの詳細な分析により、TruthfulQA、BBQ、およびBOLDのベンチマークにおけるその強みが明らかになります。Llama 2と比較して、Mixtralは真実性の向上とバイアスの削減を示しています。このモデルは、フランス語、ドイツ語、スペイン語、イタリア語、英語など、複数の言語に精通しています。 また、読んでみてください:GPTからMistral-7Bへ:AI会話のエキサイティングな飛躍 私たちの意見 Mistral…
「Pythonクライアントを使用してMyScaleを始める」
「マイスケールの基本から、テーブルの作成やインデックスの定義などを学び、上級のSQLベクトル検索までを探求してくださいなぜマイスケールを選ぶべきかも知ることができます」
「30+ AI ツールスタートアップのための(2023年12月)」
AIによって、職場での創造力、分析力、意思決定力が革新されています。現在、人工知能の能力は、企業が成長を促進し、内部プロセスをより良く制御するための絶大な機会を提供しています。人工知能の応用は広範で、自動化や予測分析からパーソナライゼーションやコンテンツ開発までさまざまです。以下は、若い企業が成長を加速させるために最適な人工知能ツールの概要です。 Pecan AI Pecan AIは、予測分析を自動化して、現代のビジネス課題(予算の縮小、コストの上昇、データサイエンスとAIリソースの制約)を解決します。Pecanの低コード予測モデリングプラットフォームは、データ駆動の意思決定を導き、ビジネスチームが目標を達成するのに役立つAI駆動の予測分析を提供します。 直感的な低コードインターフェースで、分析者は数週間で正確なモデルを設定できます。このプラットフォームでは、顧客離脱、コンバージョン、LTV、アップセル/クロスセル予測、需要予測、マーケティングミックスモデリングなど、予測モデルの容易な実装が可能です。データの準備、特徴量エンジニアリング、モデル構築、展開、モデルの監視などを自動化します。 Pecanは汎用のプラットフォームとは異なり、特定のビジネスの関心事に合わせた実行可能な予測を提供します。個別レベルの予測は詳細な洞察を提供し、一般的なBIインターフェースやビジネスシステムと統合することができます。pecan.aiで詳細をご覧いただき、無料トライアルやガイドツアーにサインアップしてください。 Hostinger AIウェブサイトビルダー Hostingerは、スタートアップオーナーを含む、ウェブサイトを作成したいすべての人に最適なAIウェブサイトビルダーを提供しています。使いやすいインターフェースで、初心者からエキスパートまで、AIを利用して独自のオンラインプラットフォームを作成できます。このビルダーにはSEOツールやeコマース機能も付属しており、ウェブサイトをさらに最適化することができます。 AdCreative.ai AdCreative.aiを使用して、広告とソーシャルメディアの戦略を強化しましょう。この究極の人工知能ソリューションを利用することで、数秒で高変換率の広告やソーシャルメディアの投稿を生成できます。AdCreative.aiで成功を最大化し、努力を最小限に抑えましょう。 SaneBox SaneBoxの強力なAIによって、メールの整理が自動化され、その他のスマートツールによって、メールの習慣が想像以上に効率的になります。今日からSaneBoxで混乱を秩序に変えましょう。 DALL·E 2 OpenAIのDALL·E 2は、単一のテキスト入力からユニークで創造的なビジュアルを生成する最先端のAIアートジェネレーターです。AIモデルは、画像とテキストの説明の大規模なデータセットでトレーニングされており、テキストに応じて詳細でビジュアルに魅力的な画像を生成します。スタートアップは、このテキストから異なる画像を生成する手法により、広告やウェブサイト、ソーシャルメディアページでグラフィックを手動で入手する必要がなく、時間とお金を節約することができます。 Otter AI 人工知能を使用することで、Otter.AIはリアルタイムの会議のメモの音声テキスト変換を提供し、共有可能、検索可能、アクセス可能、安全なものにします。会議の音声を録音し、メモを書き、スライドを自動的にキャプチャし、要約を生成する会議アシスタントを手に入れましょう。 Notion Notionは、先進のAI技術を活用してユーザーベースを拡大しようとしています。最新の機能であるNotion AIは、ノートの要約、ミーティングのアクションアイテムの特定、テキストの作成と修正など、ユーザーをサポートする高パフォーマンスな生成AIツールです。Notion…
トゥギャザーアイは、ShortおよびLongコンテキストの評価で最高のオープンソーストランスフォーマーに対抗する、StripedHyena-7Bという代替人工知能モデルを紹介します
AIと共に、シーケンスモデリングアーキテクチャへの大きな貢献を果たし、StripedHyenaモデルを導入しました。従来のトランスフォーマーに代わる選択肢を提供することで、計算効率とパフォーマンスを向上させることで、このフィールドを革新しました。 このリリースには、ベースモデルのStripedHyena-Hessian-7B(SH 7B)とチャットモデルのStripedHyena-Nous-7B(SH-N 7B)が含まれています。StripedHyenaは、昨年作成されたH3、Hyena、HyenaDNA、およびMonarch Mixerといった効果的なシーケンスモデリングアーキテクチャの学習からの重要な知見に基づいています。 研究者は、このモデルが長いシーケンスをトレーニング、ファインチューニング、および生成する際に、高速かつメモリ効率が向上していることを強調しています。StripedHyenaは、ゲート付き畳み込みとアテンションを組み合わせたハイエナオペレータと呼ばれるものによって、ハイブリッド技術を使用しています。また、このモデルは、強力なトランスフォーマーベースモデルと競合する初めての代替アーキテクチャです。OpenLLMリーダーボードのタスクを含むショートコンテキストのタスクでは、StripedHyenaはLlama-2 7B、Yi 7B、およびRWKV 14Bなどの最強のトランスフォーマーの代替アーキテクチャを上回っています。 このモデルは、ショートコンテキストのタスクと長いプロンプトの処理において、さまざまなベンチマークで評価されました。Project Gutenbergの書籍によるPerplexityスケーリング実験では、Perplexityが32kで飽和するか、このポイントを超えて減少することから、モデルがより長いプロンプトから情報を吸収する能力を示しています。 StripedHyenaは、アテンションとゲート付き畳み込みを組み合わせたユニークなハイブリッド構造によって効率を実現しています。研究者は、このハイブリッドデザインを最適化するために革新的な接ぎ木技術を使用したと述べており、トレーニング中にアーキテクチャの変更を可能にしました。 研究者は、StripedHyenaの重要な利点の1つは、トレーニング、ファインチューニング、および長いシーケンスの生成など、さまざまなタスクにおける高速性とメモリ効率の向上です。最適化されたTransformerベースラインモデルと比較して、StripedHyenaはFlashAttention v2とカスタムカーネルを使用して、32k、64k、および128kの行でエンドツーエンドトレーニングにおいて30%、50%、および100%以上優れています。 将来、研究者はStripedHyenaモデルでいくつかの領域で大きな進歩を遂げたいと考えています。彼らは、長いコンテキストを処理できるより大きなモデルを作成し、情報理解の限界を拡大したいと考えています。さらに、テキストや画像などのさまざまなソースからデータを処理して理解できるようにすることで、モデルの適応性を高めるためのマルチモーダルサポートを取り入れたいとしています。 最後に、StripedHyenaモデルは、ゲート付き畳み込みなどの追加計算を導入することによって、Transformerモデルに対して改善の余地を持っています。このアプローチは、線形アテンションに触発されたものであり、H3やMultiHyenaなどのアーキテクチャにおいて効果が証明されており、トレーニング中のモデルの品質を向上させ、推論効率に利点を提供します。
「このAI研究は、グラフ上の大規模言語モデル(LLM)について包括的な概要を共有します」
よく知られたLarge Language Models(LLMs)であるGPTやBERT、PaLM、LLaMAは、自然言語処理(NLP)と自然言語生成(NLG)においていくつかの大変な進歩をもたらしました。これらのモデルは大規模なテキストコーパスで事前学習され、質問応答やコンテンツ生成、要約など、複数のタスクで驚異的なパフォーマンスを発揮しています。 LLMsは平文のテキストを扱うことができることが証明されていますが、テキストデータがグラフ形式の構造情報とリンクされたアプリケーションを扱う必要性がますます高まっています。研究者たちは、LLMsの良好なテキストベースの推論力を活用して、マッチングサブグラフ、最短パス、接続推論などの基本的なグラフの推論タスクにLLMsをどのように適用できるかを研究しています。LLMsの統合に関連付けられているグラフベースのアプリケーションには、純粋なグラフ、テキスト豊かなグラフ、テキスト対応グラフの3つのタイプがあります。これらの機能とGNNとの相互作用に応じて、LLMsをタスク予測器、GNNの特徴エンコーダー、またはGNNとのアライナーとして扱うテクニックがあります。 LLMsはグラフベースのアプリケーションでますます人気が高まっていますが、LLMsとグラフの相互作用を調査する研究は非常に少ないです。最近の研究では、研究チームが大規模な言語モデルとグラフの統合に関連した状況と方法の体系的な概要を提案しています。目的は、テキスト豊かなグラフ、テキスト対応グラフ、純粋なグラフの3つの主要なカテゴリに可能な状況を整理することです。チームは、アライナー、エンコーダー、または予測器としてLLMsを使用する具体的な方法を共有しています。各戦略には利点と欠点があり、リリースされた研究の目的はこれらのさまざまなアプローチを対比することです。 チームは、LLMsをグラフ関連の活動で使用する利点を示すことで、これらの技術の実用的な応用に重点を置いています。チームは、これらの方法の適用と評価を支援するためのベンチマークデータセットとオープンソーススクリプトに関する情報を共有しています。結果は、この急速に発展している分野でのさらなる研究と創造性の必要性を強調して、可能な将来の研究トピックを概説しています。 チームは、彼らの主な貢献を以下のようにまとめています。 チームは、言語モデルがグラフで使用される状況を体系的に分類することで貢献を果たしました。これらのシナリオは、テキスト豊かな、テキスト対応、純粋なグラフの3つのカテゴリに整理されています。この分類法は、さまざまな設定を理解するための枠組みを提供します。 言語モデルは、グラフのアプローチを用いて詳細に分析されました。評価は、さまざまなグラフ状況の代表的なモデルをまとめたもので、最も徹底的なものとなっています。 言語モデルをグラフに関連する研究に関連して、実世界の応用、オープンソースのコードベース、ベンチマークデータセットなど、多くの資料がキュレーションされています。 言語モデルをグラフでのさらなる研究のための6つの可能な方向が提案されており、基本的なアイデアを掘り下げています。
「メタは、トレーニングにLLaMAモデルを使用するために著作権のある本を使用し、著者たちは訴訟を起こしています」
Meta Platforms、以前のFacebookとして知られる企業が、コメディアンのサラ・シルバーマンやピュリッツァー賞受賞者のマイケル・シャボンを含む有名人がテックジャイアントに反対して法的紛争に巻き込まれています。告発は、Metaが著作権付きの書籍を利用して、その法的チームの警告にもかかわらず、人工知能モデルを訓練したことを示唆し、コンテンツ制作者と企業との間で争いを引き起こしました。このReutersが最初に報じた出来事は、MetaとそのAIの進歩において燃料となるとされる作品の制作者との衝突を明らかにしています。 告発と法的混乱 Metaは数千冊の違法な書籍をAIモデルのトレーニングに使用したとの告発に直面し、法的な挑戦に直面しています。最近の裁判所の提出によって明るみに出たこの著作権侵害の訴訟は、有名な著者とテック大手の間の対立を浮き彫りにしました。Metaの法的チームからの警告にもかかわらず、Metaはこの議論のあるデータセットの利用を続け、法的な泥沼をさらに悪化させました。 制作者からの結束した反対 コメディアンのサラ・シルバーマンやピュリッツァー賞受賞者のマイケル・シャボンを含む他の有名な著者が、Metaが違法に彼らの作品を使用したと主張しています。これは人工知能言語モデルであるLlamaを訓練するためです。Reutersによると、最新の法的な提出にはこれらの主張が総括されており、知的財産の倫理的な使用についての疑問を提起しています。 Discordログと法的な議論 法的提出の重要な一部として、Meta関連の研究者がDiscordサーバーで物議を醸すデータセットの取得について話しているチャットログが含まれています。これらのログは、Metaが書籍ファイルの使用に関連する潜在的な著作権侵害に関する認識を持っていることを示す可能性のある証拠となります。この会話は、データセットの利用の許容性についてのMeta内での内部的な議論を明らかにしています。これにより、この問題に関するMetaの明らかな法的な不確実性への認識が浮き彫りにされています。 Metaが議論のあるデータセットを訓練に使用したとされるLlama大規模言語モデルのリリースは、コンテンツ制作者コミュニティ内で懸念を引き起こしました。テック企業は、著作権保護された資料の無許可使用を理由にしたAIの進化に関する訴訟にますます直面しています。これらの法的な戦いの結果は、Reutersが報じたように、データを必要とするモデルの構築におけるコストと透明性に重大な影響を与える可能性があります。 私たちの意見 技術の進歩と知的財産権の交差点を進む中で、Metaは複雑な法的闘争の最前線に立っています。著作権付きの書籍の許可なく利用するという疑惑は、倫理的な問題を提起します。テック大手は、コンテンツ制作者の知的貢献を尊重する責任があります。法的手続きが進むにつれ、テック業界は潜在的な前例を待っています。これらはAIの開発の将来と技術と創造性の関係を形作る可能性があります。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.