Learn more about Search Results プロバイダー - Page 9

「GoogleのAIの驚異的な進化、GeminiとゲームチェンジャーのStubbsを紹介します」

AIの生成を基本的なツールやサービスに統合しようという動きは、急速に変化するデジタルエコシステムにおいて活発な闘いに発展しました。Googleは、革新の限界に挑戦するテックジャイアントの中でも突出しており、GeminiとStubbsという2つの画期的なAIマーベルを開発しました。IT業界への影響を含め、これらの魅力的な進展について詳しく見ていきましょう。 Googleの変化する一般的なAI戦略 組織は最先端のAIソリューションを追求するためにさまざまな手法を探っています。慣れ親しんだクラウドプロバイダーを頼りにする人もいれば、クラウドソーシングの技術を使用してスタッフにより大きな権限を与える人もいます。一部の人々は暫定的な解決策を待っています。競争が激化する中、Googleは多くのAIオプションで市場シェアを獲得することに積極的です。 生成AIの強力な担い手:Googleがスタートアップに与える影響 Googleは生成AIの分野に大きな影響を与えています。他のプロバイダーが市場に参入するにつれて、Googleのソリューションも徐々に注目を集めています。驚くべきことに、Google Cloudは、ベンチャーファンド支援を受けた生成AIスタートアップの半数以上をサービスしています。 CEOのサンダー・ピチャイによると、AI21 Labs、Contextual、Elemental Cognition、Rytrなどの有名企業がすべてGoogleのプラットフォームを選択しています。 また読む: GoogleがニュースライターAI ‘Genesis’をリリース AIインフラストラクチャへの投資:未来に向けて準備する Googleはソフトウェアを超えてAIに専念しています。第3四半期には、人工知能に関する重いワークロードをサポートするための技術インフラへの大規模な投資により、会社の資本支出(CapEx)経費が大幅に増加しました。Googleだけでなく、AWS、Microsoft Azure、Oracleなどの他のクラウドハイパースケーラーも、生成的な人工知能への需要の増加に対応するためにインフラを近代化しています。 Geminiの紹介、GoogleのマルチモーダルAIスーパーヒーロー CEOのサンダー・ピチャイは、2023年5月のGoogle I/O開発者会議で、将来の人工知能システムであるGeminiを発表しました。GoogleのDeepMind部門が開発したGeminiは、OpenAIのChatGPTに匹敵し、またはそれを上回る人工知能システムです。ピチャイは、DeepMindのAlphaGoのパワーと強力な言語モデリングの機能を組み合わせたGeminiの特別な特性を強調しました。テキスト、画像、その他のデータタイプの統合により、このマルチモーダルモデルはより有機的な会話能力を約束しています。 Googleのチーフサイエンティストであるジェフリー・ディーンは、Geminiの将来についていくつかの考えを共有しました。ディーンは、GeminiはGoogleの新しいAIインフラストラクチャ、Pathwaysを使用してさまざまなデータセットのトレーニングを行うと明かしました。この示唆によれば、Geminiは現時点で最大の言語モデルである1750億のパラメータを持つGPT-3を超える可能性があります。 Geminiは、ツリーサーチや強化学習といったAlphaGoの技術を活用して新たな推論や問題解決のスキルを獲得し、異なる容量とサイズを持つ「一連のモデル」を提供し、柔軟で強力なAIツールになる予定です。 また読む: Googleが最先端のVertex AI Searchを発表…

「データプラットフォームから機械学習プラットフォームへ」

データ/機械学習は、私たちのテクノロジーの風景では最も人気のあるトピックです私はデータ/機械学習プラットフォームの理解と、それらのプラットフォームが基本的なものから複雑なものへと進化する方法を共有したいと思います最後に、最善を尽くします...

『Retrieval-Augmented GenerationとSelf-Hosted LLMsから期待されること』

この記事では、自己ホストされたLLMsとRAG技術を組み合わせてAIアプリケーションを開発する方法について学びます

Segmind APIsを使用した安定した拡散モデルのサーバーレスAPIの活用

紹介 現代のソフトウェア開発において、サーバーレスコンピューティングの登場により、アプリケーションの構築と展開の方法が革命されました。利用可能なツールとテクノロジーの中で、サーバーレスAPIは堅牢でスケーラブル、効率的なアプリケーションを作成するためのエンエーブラーとなっています。また、現代のソフトウェアシステムに< a href=”https://www.voagi.com/midjourney-vs-stable-diffusion-ai-image-generators-battle.html”>Stable Diffusionモデルなどの人工知能技術を統合する必要性があるため、これらのサーバーレスAPIを使用する能力は有用です。本記事では、サーバーレスAPIの概念を探求し、AIおよび機械学習システムのリーディングカンパニーであるSegmindが提供する幅広いサーバーレスAPIをプロジェクトに統合する方法について説明します。 学習目標 現代のアプリケーション開発におけるサーバーレスAPIの理解 SegmindのサーバーレスAPIとその応用の習得 SegmindのAPIをNode.jsとPythonで使用する方法の学習 APIに関連するセキュリティ上の問題に対処する この記事は、データサイエンスブロガソンの一部として掲載されました。 サーバーレスAPIの理解 SegmindのサーバーレスAPIに入る前に、サーバーレスAPIとは何か、なぜ現代のソフトウェア開発において画期的な存在なのかについて理解しましょう。 サーバーレスAPI:簡潔な歴史 サーバーレスAPIは、オンライン取引を容易にするために設計されたアプリケーションプログラミングインタフェースの一形態であり、開発者が外部サービスとのやり取りを行う方法を変革しました。従来、開発者は特定のタスク(例:支払い処理、マッピングサービスなど)のためにゼロから関数を構築する必要がありました。このアプローチはしばしば時間がかかり、リソースが多く必要でした。 サーバーレスAPIは異なります。支払い認証、マッピング、天気データなど、目的を果たすための小型アプリケーションのようなものです。革新的な点は、これらのAPIがサーバーレスバックエンドによって動作することで、開発者は物理サーバーの管理やサーバーメンテナンスの複雑さを心配する必要がなくなったということです。 サーバーレスAPIの利点は何ですか? サーバーレスAPIの利点は多岐に渡ります: サーバー管理が不要:サーバーレスAPIなら物理サーバーの管理の手間をかけることなく、新しいAPIやアプリケーションの開発に集中することができます。これにより、開発リソースの効率的な活用が可能になります。 スケーラビリティ:サーバーレスAPIはスケーラブルであり、ユーザーの需要の急増にも問題なく対応することができます。オンデマンドのスケーラビリティにより、トラフィックの増加時でも一貫したユーザーエクスペリエンスを提供します。 レイテンシーの低減:サーバーレスAPIはオリジンサーバーにホストされ、そこからアクセスされます。これにより、レイテンシーが低減し、アプリケーションの全体的なパフォーマンスと応答性が向上します。これは、Stable DiffusionやLarge Language Models(LLM)などの大規模モデルにも有用です。これはSegmindのサーバーレスAPIからも利益を得られます。…

「NVIDIAの人工知能がOracle Cloud Marketplaceで利用可能に」

ジェネラティブAIモデルのトレーニングがさらに容易になりました。 NVIDIA DGX Cloud AIスーパーコンピューティングプラットフォームとNVIDIA AI Enterpriseソフトウェアは、Oracle Cloud Marketplaceで利用可能になりました。これにより、Oracle Cloud Infrastructureのお客様は、高性能なアクセラレーテッドコンピューティングとソフトウェアにアクセスし、数回のクリックで安全で安定したサポート付きの本番用AIを実行することが可能になります。 業界初のこの追加により、エンドツーエンドの開発とOracle Cloud上での展開のための新たな機能がもたらされます。企業はOracle Cloud MarketplaceからDGX Cloudでモデルをトレーニングし、その後NVIDIA AI Enterpriseを使用してOCIでアプリケーションを展開することができます。 Oracle CloudとNVIDIAがAI時代への進出を支える 世界中の数千の企業が、自社のビジネスを推進するアプリケーションにOCIを信頼しています。その顧客は、医療、科学研究、金融サービス、通信など、さまざまな業界のリーダーを含んでいます。 Oracle Cloud Marketplaceは、顧客に柔軟な利用モデルと簡単な請求を提供するソリューションのカタログです。DGX…

『ランチェーンでチェーンを使用するための包括的ガイド』

イントロダクション 言語処理の最前線に足を踏み入れてください!言語が人間とテクノロジーの間の重要なつながりである領域で、自然言語処理の進歩はいくつかの驚異的な高みを開拓しました。この進歩の中には、画期的な大規模言語モデルがあります。これはテキストベースの情報との相互作用を再構築する革命的な力です。本総合学習プログラムでは、テキストベースの情報との相互作用を再構築する革新的なツールであるLangChainの複雑さに深く入り込んでいきます。あなたは「Langchain」はどんなチェーンか、考えたことはありますか? LangChainは、大規模言語モデルの最もダイナミックなフィールドへのゲートウェイとして独立して立っており、これらのモデルが生の入力を洗練された人間らしい反応に変換する方法について深い理解を提供しています。この探求を通じて、LangChainの基本的な構成要素を解き明かし、LLMチェーンやシーケンシャルチェーンからルーターチェーンの複雑な構造までを理解していきます。 学習目標 LLMチェーンやシーケンシャルチェーンを含むLangChainのコアコンポーネントを理解し、入力がシステムを流れる様子を観察します。 プロンプトテンプレートと言語モデルの接続を探求し、異なる要素を一貫して統合する方法を学びます。 現実のタスクに対して機能的なチェーンを作成する実践的な経験を積みます。 構造、テンプレート、パーシング技術を微調整することにより、チェーンの効率を向上させるスキルを開発します。 この記事はData Science Blogathonの一環として公開されました。 LLMとは何ですか? 大規模言語モデル(LLM)とは、人間らしいテキストを理解し生成するために設計された人工知能の一種を指します。OpenAIのGPT-3.5などのこれらのモデルは、人間の言語のパターンや構造を理解するために豊富なテキストデータでトレーニングされます。彼らは翻訳、コンテンツの作成、質問への回答など、さまざまな言語関連のタスクを実行することができます。 LLMは自然言語処理の貴重なツールであり、チャットボット、コンテンツ生成、言語翻訳サービスなどの分野で応用されています。 LangChainとは何ですか? LangChain Chainsの複雑さを解き明かす前に、LangChain自体の本質を把握しましょう。LangChainは、OpenAI、Cohere、Bloom、Huggingfaceなどのさまざまな大規模言語モデル(LLM)プロバイダーとの対話を簡素化するために設計された堅牢なライブラリです。LangChainの特徴的な点は、1つまたは複数のLLMを結ぶチェーンと論理的な接続を作成できる能力です。 LangChainを使う理由 LangChainは、想像力によって限られた機会を提供します。 情報を提供するだけでなく、ウィットと魅力でユーザーと関わるチャットボットを想像してください。 購入を迫られるほど正確に製品を提案する電子商取引プラットフォームを思い浮かべてください。 個別の医療情報を提供し、個人が健康に関する情報に基づいた意思決定を行えるようにする医療アプリを想像してください。 LangChainを使えば、非凡な体験を生み出す力があります。これらのアイデアを現実に変える可能性は、あなたの指先にあります。 LangChainにおけるチェーンの理解…

AIの障壁を越える:OpenAIがLLMsをメインストリームの成功へ導くまで

「ML開発者ツール(広くはMLOpsとして分類される)が単体のビジネスとして成り立つかどうかについては常々懐疑的な意見を述べてきましたが、ごく一部の例外を除いて、私の意見は正しかったと証明されました...」

アメリカでのトップ10オンラインデータサイエンスコース

紹介 データサイエンスは技術の世界での未来的な分野です。アルゴリズムが成功を導くドメインで人々がキャリアを獲得するために必要なスキルと知識を学ぶことが最も重要です。実践的なトレーニングや現実世界の問題を通じて、学習者は自身のキャリアを向上させ、技術的な知識ベースを向上させるためのプロのスキルを開発することができます。アメリカのオンラインデータサイエンスコースは自宅でデータサイエンスのスキルを学ぶための最良のオプションです。 アメリカにおけるデータサイエンスのキャリア成長 アメリカのデータサイエンスのキャリアは成功の脈動を経験しています。すべての組織はさまざまな種類のデータを扱わなければなりません。これにより、各領域でデータサイエンスの専門家への緊急性が生まれます。 プロのデータサイエンティストは需要の増加を見ており、企業は魅力的な報酬パッケージを提供する準備ができています。これは以下のイメージで示されています。 組織はデータから貴重な情報を抽出し、その情報をもとにした知見に基づいて情報を活用しています。このプロセス全体を処理できるプロの専門家が必要です。アメリカのオンラインデータサイエンスコースは訓練された専門家やエキスパートによる需要の増加に応えるために、効率的かつ効果的にデータサイエンスを学ぶのに役立つ必須のツールです。 なぜオンラインでデータサイエンスを学ぶのか? オンラインでのデータサイエンスの学習には多くの利点があり、このコースはそれに時間を投資したいと考えている個人に人気の選択肢となっています。 その主な利点は以下の通りです: アクセス:オンラインコースは、インターネット上でスキルを向上させるための豊富な知識ベースと貴重な情報にアクセスすることができます。これにより、忙しいスケジュールを持つ人々でもこの分野での効率を向上させる柔軟性が提供されます。 自己学習:自己学習コースでは特定のペースで学ぶことに拘束されません。この柔軟性により、学習者は自分の学習体験を個人化することができます。 コスト効果:オンライン学習コースは、クラスルーム学習よりも費用が低く、その他の費用を加えても安価です。 業界関連のコンテンツ:オンラインのデータサイエンスコースは、最新のトレンドや技術を紹介する業界関連の洞察とコンテンツを提供します。 学習スタイル:オンラインコースは、クイズ、フォーラム、マルチメディアコンテンツなど、多様な学習スタイルを提供することができます。これにより、学習者はシステムに効果的に参加することができます。 優れたデータサイエンスコースで学ぶべき概念は何ですか? オンラインのデータサイエンスカリキュラムはプラットフォームやコースプロバイダーによって異なります。ただし、アメリカの最高のオンラインデータサイエンスコースが提供する主要なカリキュラムには以下の内容が含まれます: データサイエンスの紹介 数学と統計のスキル 機械学習 コーディング 機械学習で使用されるアルゴリズム データサイエンスのための統計的な基盤 データ構造とアルゴリズム 科学計算…

「SaaS AIの機能が堀や障壁なしでアプリケーションと出会う」

最近、いくつかのエンタープライズSaaS企業が創発型AI機能を発表しましたが、これは持続可能な競争上の優位性を欠いたAIスタートアップにとって直接的な脅威です

公的機関によるAI調達のための標準契約条項の提案

ショーン・ムッチ、Co-CEO/CFO、AI&パートナーズ、[email protected]、+31(6)572 85579、ショーンはエンターテイメント業界(例:映画やアート)での幅広い経験を持ち、デザインに特化していますこれに加えて、ショーンはプロフェッショナルサービス業界で10年以上の経験を持ち、5年間のテック会計士のポジションを務めてきましたショーン……公共機関によるAI調達のための標準契約条項の提案について 詳細を読む»

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us