Learn more about Search Results クラウド - Page 9
- You may be interested
- 「アメリカ軍がジェネレーティブAIを試す」
- カカオブレインからの新しいViTとALIGNモデル
- 「LLMを使用して、会話型のFAQ機能を搭載...
- 新しいAIの研究がコンピュータビジョンを...
- 「事実かフィクションかを超えて:GPT-4の...
- 「Google Brainの共同創設者は、テック企...
- 倫理と社会のニュースレター#1
- AIとMLによる株式取引の革命:機会と課題
- 「改善された推論のためのアナロジー提示...
- 「データを活用したリーダーシップ:アナ...
- 「拡散を支配するための1つの拡散:マルチ...
- 「AIの画像をどのように保存すべきか?Goo...
- 中国の研究者たちは、構造化データに対す...
- 『今日、企業が実装できる5つのジェネレ...
- Google AIは、屋外での人間の視点によるシ...
このAI論文では、既知のカメラパラメータなしで新しい視点合成を行うために、COLMAP-Free 3D Gaussian Splatting(CF3DGS)を提案しています
ニューラルレンダリングの進歩により、シーンの再構築や新しい視点の生成において重要なブレイクスルーがもたらされました。しかし、その効果はカメラの姿勢の正確な予備計算に大きく依存します。この問題を最小化するために、事前計算されたカメラの姿勢がないNeural Radiance Fields(NeRFs)を訓練するためにさまざまな取り組みが行われています。しかし、NeRFsの暗黙的な表現は、3Dの構造とカメラの姿勢を同時に最適化するのが困難です。 UCサンディエゴ、NVIDIA、UCバークレーの研究者らは、COLMAP-Free 3D Gaussian Splatting(CF-3DGS)を導入しました。これは、ビデオの時間的な連続性と明示的なポイントクラウド表現の2つの重要な要素を高めています。すべてのフレームを一度に最適化するのではなく、CF-3DGSはカメラが移動するにつれてシーンの3Dガウスを連続的な形で「成長させる」一つの構造を構築します。CF-3DGSは各フレームに対してローカルな3Dガウスセットを抽出し、全体のシーンのグローバルな3Dガウスセットを維持します。 https://arxiv.org/abs/2312.07504 リアルな画像を視点から生成するためにさまざまな3Dシーン表現が使用されており、平面、メッシュ、ポイントクラウド、マルチプレーンイメージなどが含まれます。NeRFs(Neural Radiance Fields)は、その写真のようなリアルなレンダリング能力のために、この分野で注目を集めています。3DGS(3D Gaussian Splatting)メソッドは、純粋な明示的な表現と微分を利用したポイントベースのスプラッティング方法を使用して、ビューのリアルタイムレンダリングを可能にします。 CF-3DGSは既知のカメラパラメータを必要としないで合成ビューを実現します。それは3D Gaussian Splatting(3DGS)とカメラの姿勢を同時に最適化します。近くのフレームから相対カメラ姿勢を推定するためにローカルな3DGSメソッドを使用し、未観測のビューから3Dガウスを進行的に展開するためにグローバルな3DGSプロセスを使用しています。CF-3DGSは、明示的なポイントクラウドを使用してシーンを表現し、3DGSの機能とビデオストリームに固有の連続性を活用します。このアプローチは、入力フレームを順次処理し、3Dガウスを進行的に展開してシーンを再構築します。この手法により、トレーニングと推論の速度が高速化されます。 https://arxiv.org/abs/2312.07504 CF-3DGSメソッドは、先行の最先端技術よりもポーズ推定の耐性が高く、新規ビューの合成品質も優れています。この手法は、より複雑で挑戦的なカメラの動きを示すCO3Dビデオで検証され、ビューの合成品質においてNope-NeRFメソッドを上回る結果を示しました。このアプローチは、CO3D V2データセットにおいてすべてのメトリックでNope-NeRFeをしのぎ、特に複雑なカメラの動きがあるシナリオでのカメラの姿勢推定の耐性と精度を示しています。 まとめると、CF-3DGSはビデオの時間的な連続性と明示的なポイントクラウド表現を利用してビューを効果的かつ堅牢に合成する方法です。この方法は、主にビデオストリームや順序付けられた画像コレクションに適しており、Structure-from-Motion(SfM)前処理の必要はありません。また、非順序の画像コレクションに対応するための将来の拡張の可能性もあります。
ビジネスにおけるAIの潜在的なリスクの理解と軽減
「この技術を導入する際に遭遇する可能性のあるAIのリスクを学びましょうビジネスオーナーとして、そのようなリスクを避けるためにできることを理解しましょう」
「AIおよび自動化により、2030年に存在しなくなるであろう6つのテクノロジージョブ」
「現在の進行方向に基づいて、バランスを保っているいくつかのテック系の職種をご紹介します」
「DevOps 2023年の状況報告書:主要な調査結果と洞察」
年次調査の結果が発表されました画期的な発見がありますこのレポートは、AIとドキュメンテーションが生産性と仕事の満足度に与える影響を詳しく調査しています
「変化の風を操る:2024年の主要なテクノロジートレンド」
AIの進歩からインフラのイノベーション、メールセキュリティの要件など、将来の展望を把握し、組織を戦略的に導くための理解を得る
中国のこのAI論文では、UniRepLKNetと呼ばれる画像、音声、時間系列データ解析においてクロスモーダル性能を向上させるための革新的な大規模カーネルConvNetアーキテクチャが紹介されています
CNN(畳み込みニューラルネットワーク)は、近年では画像認識のための人気のある技術となっています。物体検出、分類、セグメンテーションのタスクにおいて非常に成功しています。しかし、これらのネットワークがより複雑になるにつれて、新たな課題が浮上しています。テンセントAI Labと香港中文大学の研究者は、大規模カーネルCNNにおけるアーキテクチャの課題に対応するための4つのガイドラインを提案しました。これらのガイドラインは、大規模カーネルをビジョンのタスク以外の領域、例えば時系列予測や音声認識などに拡張して、画像認識の向上を目指しています。 UniRepLKNetは、非常に大きなカーネルを持つConvNetの有効性を探求し、空間畳み込みだけでなく、ポイントクラウドデータ、時系列予測、音声、ビデオの認識などのドメインにまで拡張します。以前の研究では、異なる大きなカーネルの種を紹介していましたが、UniRepLKNetはそのようなカーネルを持つConvNetのためのアーキテクチャ設計に焦点を当てています。UniRepLKNetは3Dパターン学習、時系列予測、音声認識の分野で専門モデルを上回るパフォーマンスを発揮します。テクニカルモデルよりもわずかに低いビデオ認識の精度を持ちながらも、UniRepLKNetはゼロから訓練された総合的なモデルであり、さまざまなドメインでの柔軟性を提供します。 UniRepLKNetは大規模カーネルを持つConvNet向けのアーキテクチャガイドラインを導入し、過剰な深さを避け、広範なカバレッジを重視しています。ガイドラインはVision Transformers(ViTs)の制限に対処し、効率的な構造に焦点を当て、畳み込み層の再パラメータ化、タスクベースのカーネルサイジング、3×3畳み込み層の組み込みを扱っています。UniRepLKNetは既存の大規模カーネルConvNetと最近のアーキテクチャを上回る、画像認識における性能と効率を示しています。時系列予測や音声認識でも普遍的な知覚能力を示し、ポイントクラウドデータの3Dパターン学習においても、専門のConvNetモデルを超える性能を持ちます。 UniRepLKNetのアーキテクチャは、ImageNetの精度が88.0%、ADE20KのmIoUが55.6%、COCOボックスAPが56.4%といった画像認識タスクにおけるトップクラスのパフォーマンスを達成しています。UniRepLKNetの普遍的な知覚能力は、グローバル気温と風速予測の課題においてMSEとMAEで競合他社を上回ることで示されています。UniRepLKNetはポイントクラウドデータの3Dパターン学習においても専門のConvNetモデルを超える性能を発揮します。このモデルは、セグメンテーションなどの下流タスクでも有望な結果を示し、多様なドメインでの優れたパフォーマンスと効率性を確認しています。 まとめると、研究のまとめは以下の通りです: 研究では、大規模カーネルConvNet向けの4つのアーキテクチャガイドラインを導入しています。 これらのガイドラインは大規模カーネルConvNetの特徴を重視しています。 これらのガイドラインに従って設計されたConvNetモデルであるUniRepLKNetは、画像認識タスクにおいて競合他社を上回る優れたパフォーマンスを発揮します。 UniRepLKNetはカスタマイズなしで時系列予測や音声認識などの領域で普遍的な知覚能力を示します。 UniRepLKNetはポイントクラウドデータの3Dパターン学習においても専門モデルを上回ります。 また、研究は非膨張性の大規模カーネル畳み込み層の性能を向上させるためにDilated Reparam Blockを導入しています。 この研究は貴重なアーキテクチャガイドラインを提供し、UniRepLKNetとその能力を紹介し、Dilated Reparam Blockの概念を示しています。
「2024年に使用するためのトップ10のリアルタイムデータベース」
導入 現代アプリケーションのダイナミックな世界において、リアルタイムデータベースはスムーズなデータ管理と即時の更新を維持するために重要です。大量のデータを扱うために設計されたこれらのデータベースは、情報への瞬時のアクセスを提供します。この記事では、2024年に影響を与えるであろうトップ10のリアルタイムデータベースについて詳しく説明します。 リアルタイムデータベースの理解 リアルタイムデータベースは即時の更新とアクセスが必要なデータを管理するために作成されています。同期の遅延が発生する従来のデータベースとは異なり、リアルタイムデータベースはすべての接続されたデバイスやアプリケーションにデータ変更の迅速な反映を保証します。これにより、リアルタイムのコラボレーション、メッセージング、モニタリングのニーズを持つアプリケーションに適しています。 現代アプリケーションにおけるリアルタイムデータベースの重要性 リアルタイムデータベースの重要性は、即時のデータ更新と同期の需要により、現代のアプリケーションで増大しています。メッセージングアプリから共同編集可能なドキュメントエディタ、リアルタイムアナリティクスダッシュボードまで、これらのデータベースはスムーズなデータ管理と瞬時のコミュニケーションの基盤となります。データ同期の遅延を解消することにより、リアルタイムデータベースはユーザーエクスペリエンスを向上させるだけでなく、効率的かつデータに基づく意思決定を可能にします。 トップ10のリアルタイムデータベース 以下は、2024年に使用するトップ10のリアルタイムデータベースのリストです。 1. Firebase リアルタイムデータベース Firebase リアルタイムデータベースはクラウドホスト型のNoSQLデータベースであり、開発者がデータをリアルタイムに保存および同期できるようにします。JSONデータモデルの使用は、開発プロセスに柔軟性と簡便さをもたらします。Firebaseプラットフォームの重要なコンポーネントとして、ウェブとモバイルの両方のアプリケーションを作成するための強力なツールキットに貢献します。 機能と利点 Firebase リアルタイムデータベースの優れた機能の1つは、データ変更があった場合にすべての接続されたデバイスで瞬時の更新が保証されるリアルタイム同期です。これにより、ユーザーは常に最新の情報を得ることが保証されます。さらに、データベースはオフラインサポートを提供し、インターネットに接続していない状況でもデータにアクセスおよび変更を行うことができます。Firebase リアルタイムデータベースは堅牢なセキュリティルールを取り入れており、機密データへの不正アクセスからデータを保護します。 ユースケースと例 Firebase リアルタイムデータベースは、チャットアプリ、共同編集可能なドキュメントエディタ、リアルタイムダッシュボードなど、リアルタイムの更新を要求するアプリケーションで広く使用されています。例えば、Firebase リアルタイムデータベースを活用したメッセージングアプリは、すべての参加者に迅速にメッセージを配信し、シームレスかつリアルタイムのコミュニケーション体験を作り出します。 こちらから入手できます: https://firebase.google.com/ 2.…
「データの必要量はどのくらいですか? 機械学習とセキュリティの考慮事項のバランス」
データサイエンティストにとって、データは多ければ多いほどよいものとは限りませんしかし、組織の文脈を広く見ると、自身の目標と他の考慮事項とのバランスを取らなければなりませんデータの収集及び...
「UnbodyとAppsmithを使って、10分でGoogle Meet AIアシスタントアプリを作る方法」
「ほぼコードなしで、Google Meetのビデオ録画を処理し、メモを作成し、アクションアイテムをキャプチャするAIのミーティングアシスタントアプリを開発する方法を学びましょう」
『ELS+ Stream Tool』
ELS+は、企業がデータから有益な洞察を抽出し、意思決定を改善し、パフォーマンスを向上させるためのAIパワードアナリティクスツールです
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.