Learn more about Search Results ウェブサイト - Page 9
- You may be interested
- カスタムレンズを使用してウェルアーキテ...
- このAI論文は、オープンエンドのシナリオ...
- SAPシステムとのデータ統合のマスタリング...
- 「LlaMA 2の始め方 | メタの新しい生成AI」
- RAGアプリケーションデザインにおける実用...
- このAI研究は、事前のイメージングなしで...
- Pythonコードの品質向上ガイド:データサ...
- AVFormer:凍結した音声モデルにビジョン...
- 「GPT4による高度なデータ分析:ヨーロッ...
- 「50以上の最新AIツール(2023年8月)」
- マーケティングキャンペーンを改善する革...
- ウェブと組み込みシステムにおけるRustの...
- 強化学習:SARSAとQ-Learning – 第3部
- 直感的にR2と調整済みR2のメトリックを探...
- 「Rで複数のファイルを自動的にインポート...
このAIニュースレターはあなたが必要とするものです#76
今週、私たちはトランスフォーマーや大規模な言語モデル(LLM)の領域を超えた重要なAIの進展に焦点を当てました最近の新しいビデオ生成拡散ベースのモデルの勢いについて…
6つのGenAIポッドキャスト、聴くべきです
はじめに 急速に進化する 人工知能(AI)の世界において、生成AI(GenAI)の領域は魅力的でダイナミックな分野として注目されています。技術の進歩に伴い、この分野の微妙なニュアンスを理解することは重要ですが、最新情報を把握することは難しいかもしれません。GenAIは新しいコンテンツやデータを作成する能力で知られていますが、まだ比較的新しい分野ですので、最新の動向については多くの人が興味を持ちながらも情報を得ていません。この知識のギャップを埋めるために、GenAIの専門家がホストするポッドキャストは貴重な情報源となります。これらのポッドキャストは、最先端のテクノロジーの領域を探求したい学習者にとって、第一級の信頼できる情報を提供してくれます。以下に、生成AIの愛好家が聞くべきおすすめのポッドキャスト6つを紹介します。 聴くべきトップ6のGenAIポッドキャスト 1. Leading With Data by Analytics Vidhya Analytics VidhyaはデータサイエンスとAIコミュニティで有名なプラットフォームであり、彼らのポッドキャスト「Leading With Data」ではデータサイエンス、機械学習、そしてなんと言っても生成AIについてさまざまな側面を探求しています。業界のリーダーや専門家、実践者との洞察に満ちた議論を期待してください。彼らは自らの経験、課題、そしてGenAIの未来へのビジョンを共有しています。 コンテンツ形式:Leading With Dataでは業界リーダーや専門家、実践者との議論を取り上げ、GenAI、データサイエンス、機械学習などさまざまなトピックをカバーしています。 対象読者:データサイエンス愛好者、専門家、生成AIの応用に関する洞察を得たい人々。 このGenAIポッドキャストはSpotify、Apple Podcasts、Google Podcasts、YouTube、および彼らのコミュニティプラットフォームでご覧いただけます。 2. The…
「GTFSデータを使用して輸送パターンを数量化する」
「このノートには、ブダペスト、ベルリン、ストックホルム、トロントの4つの都市を選んで、公開されているGTFS(公共交通機関の一般転送仕様)データを使用して、それらの公共交通システムを概説しました…」
「デベロッパー用の15以上のAIツール(2023年12月)」
“`html GitHub Copilot GitHub Copilotは、市場をリードするAIによるコーディングアシスタントです。開発者が効率的に優れたコードを作成できるように設計され、CopilotはOpenAIのCodex言語モデルを基に動作します。このモデルは自然言語と公開コードの広範なデータベースの両方でトレーニングされており、洞察に満ちた提案を行うことができます。コードの行や関数を完全に補完するだけでなく、コメント作成やデバッグ、セキュリティチェックの支援など、開発者にとって大変貴重なツールとなっています。 Amazon CodeWhisperer AmazonのCodeWhispererは、Visual StudioやAWS Cloud9などのさまざまなIDEでリアルタイムのコーディング推奨事項を提供する、機械学習に基づくコード生成ツールです。大規模なオープンソースコードのデータセットでトレーニングされており、スニペットから完全な関数までを提案し、繰り返しのタスクを自動化し、コードの品質を向上させます。効率とセキュリティを求める開発者にとって大変便利です。 Notion AI Notionのワークスペース内で、AIアシスタントのNotionがさまざまな執筆関連のタスクをサポートします。創造性、改訂、要約などの作業を助け、メール、求人募集、ブログ投稿などの作成をスピードアップさせます。Notion AIは、ブログやリストからブレストセッションや創造的な執筆まで、幅広い執筆タスクの自動化に使用できるAIシステムです。NotionのAI生成コンテンツは、ドラッグアンドドロップのテキストエディタを使用して簡単に再構成や変換ができます。 Stepsize AI Stepsize AIは、チームの生産性を最適化するための協力ツールです。プロジェクトの履歴管理やタスク管理の役割を果たし、Slack、Jira、GitHubなどのプラットフォームと統合して更新を効率化し、コミュニケーションのミスを防ぎます。主な機能には、活動の統一した概要、質問への即時回答、堅牢なデータプライバシーコントロールが含まれます。 Mintlify Mintlifyは、お気に入りのコードエディタで直接コードのドキュメントを自動生成する時間の節約ツールです。Mintlify Writerをクリックするだけで、関数のための良く構造化された、コンテキストに即した説明を作成します。開発者やチームにとって理想的であり、複雑な関数の正確なドキュメントを生成することで効率と正確性が高く評価されています。 Pieces for Developers…
関係データベースとその応用についての深い探求
今日では、さまざまな頻繁に関連のないカテゴリに膨大な量のデータを記憶する必要性が、高い効率のデータベースの重要な意義を強調しています。データベースは、迅速なアクセス、操作、分析を可能にするために、注意深く整理、構造化、保存されたデータのコレクションです。データベースは、データウェアハウジングやオンライントランザクション処理など、さまざまなタスクに役立ち、在庫記録、顧客情報、財務記録などのデータの種類をサポートしています。 リレーショナルデータベースとは何ですか? リレーショナルデータベースは、基本的にはテーブル形式で行と列にデータが整然と構造化されたセットです。このパラダイムでは、テーブルを使用してデータを記述し、各行が特定のレコードを示し、各列が特定のプロパティまたはフィールドを定義します。 基本的には、予め定義された関係を持つデータオブジェクトのセットがリレーショナルデータベースを構成します。テーブルの列は、各々が特定のタイプのデータを含み、フィールドは属性の実際の値を含んでいます。テーブルの行は、単一のアイテムやエンティティの関連する値のグループを表します。テーブル内の各行を識別するために一意の識別子である主キーが使用されます。外部キーは、異なるテーブルの行の関係を確立するために使用されます。 リレーショナルデータベースの例 子供の夏キャンプのデータでは、テーブル内の各行が個別のキャンパーを表し、彼らの名前、年齢、参加しているアクティビティ、および一意のID番号などの情報が含まれています。 ID Name Age Activity 1 John 11 Pottery 2 Courtney 16 Photography 3 Matt 14 Cooking 4 Jasmine…
「Perplexity(パープレキシティ)が2つの新たなオンラインLLMモデルを発表:『pplx-7b-online』と『pplx-70b-online』」
パープレキシティ(Perplexity)は、革新的なAIスタートアップとして、情報検索システムを変革する解決策を発表しました。このローンチでは、革新的なLLM(Large Language Models)の2つ、pplx-7b-onlineとpplx-70b-onlineが公にアクセス可能なAPIを介して導入されました。これらのモデルは、Claude 2などの従来のオフラインLLMとは異なり、ライブインターネットデータを活用してリアルタイムで正確なクエリの応答を実現するため、最新のスポーツスコアなどの最新情報といった即座の情報に対する課題を克服しています。 パープレキシティのpplxオンラインモデルがAIの領域で差別化される要因は、APIを介して提供されるユニークなオファーにあります。Google Bard、ChatGPT、BingChatなどの既存のLLMは、オンラインブラウジングで進歩を遂げていますが、APIを介してこの機能を拡張しているものはありません。パープレキシティは、社内の検索インフラストラクチャにこの機能を帰属し、信頼性のある情報源を優先し、高度なランキングメカニズムを活用してリアルタイムに関連性の高い信頼性のある情報を提示するための幅広い優れたウェブサイトのリポジトリをカバーしています。これらのリアルタイムの「スニペット」はLLMに統合され、最新の情報を容易に反映しています。両モデルは、mistral-7bベースモデルとllama2-70bベースモデルに基づいて構築されています。 特筆すべきことに、Perplexity AIは、最先端のテクノロジーと統合するだけでなく、最適なパフォーマンスを引き出すためにこれらのモデルを細かく調整しています。この注意深いプロセスでは、社内データ請負業者によってキュレートされた多様なトップクラスのトレーニングセットを活用しています。この継続的な改善作業により、モデルは助けになり、事実性と新鮮さの面で優れた性能を発揮します。 これらのモデルの効果を検証するために、Perplexity AIは、助けになり、事実性、最新の情報性などの要素を評価する多様なプロンプトを使用して包括的な評価を実施しました。これらの評価では、オープンAIのgpt-3.5やメタAIのllama2-70bなどの主要なモデルとの比較を行い、全体的なパフォーマンスと特定の基準に焦点を当てました。 これらの評価の結果は印象的です。pplx-7b-onlineおよびpplx-70b-onlineは、鮮度、事実性、総合的な好みの面で、対応する他のモデルを常に上回っています。例えば、鮮度の基準では、pplx-7bとpplx-70bは、gpt-3.5とllama2-70bを上回る1100.6と1099.6の推定Eloスコアを獲得しました。 即座に、開発者はPerplexityのAPIにアクセスして、これらのモデルのユニークな機能を活用したアプリケーションを作成することができます。価格体系は利用料に基づいており、早期テスター向けの特別プランも用意されています。 このパイオニア的なリリースにより、PerplexityはAIによる情報検索システムに革新的な変革をもたらしています。pplx-7b-onlineとpplx-70b-onlineモデルがアクセス可能なAPIを介して導入され、既存のオフラインLLMの制約を解消し、正確かつ最新の事実性のある情報の提供で優れたパフォーマンスを発揮しています。 pplx-apiでの開始はこちら。 Perplexity Labsでオンラインモデルを無料で試す。 この記事は、PerplexityがオンラインLLMモデル2つを発表:「pplx-7b-online」と「pplx-70b-online」記事から取得されました。MarkTechPostから転載されました。
「2024年に必ず試してみるべきトップ15のベクターデータベース」
イントロダクション 迅速に進化するデータサイエンスの風景において、ベクトルデータベースは高次元データの効率的な保存、検索、操作を可能にする重要な役割を果たしています。本稿では、ベクトルデータベースの定義と意義を探求し、従来のデータベースとの比較を行い、2024年に検討すべきトップ15のベクトルデータベースについて詳細な概要を提供します。 ベクトルデータベースとは何ですか? ベクトルデータベースは、本質的にはベクトル化されたデータを効率的に処理するために設計されています。伝統的なデータベースが構造化データの保存に優れているのに対し、ベクトルデータベースは多次元空間におけるデータポイントの管理に特化しており、人工知能、機械学習、および自然言語処理のアプリケーションに理想的です。 ベクトルデータベースの目的は、ベクトル埋め込み、類似検索、高次元データの効率的な処理を支援する能力にあります。伝統的なデータベースは非構造化データに苦労する場合があるのに対し、ベクトルデータベースはデータポイント間の関係性や類似性が重要なシナリオで優れたパフォーマンスを発揮します。 ベクトルデータベース vs 伝統的なデータベース 側面 伝統的なデータベース ベクトルデータベース データの種類 テーブル形式の単純なデータ(単語、数字)。 専用の検索を行う複雑なデータ(ベクトル)。 検索方法 正確なデータの一致。 近似最近傍探索(Approximate Nearest Neighbor、ANN)を使用した最も近い一致。 検索手法 標準的なクエリメソッド。 ハッシュやグラフベースの検索など、ANNに特化した手法。 非構造化データの処理 予め定義された形式の不足により困難。…
2024年のデータサイエンス向けトップ15のベクトルデータベース:包括的ガイド
導入 データサイエンスの急速に変化する風景において、ベクトルデータベースは高次元データの効率的なストレージ、検索、操作を可能にする重要な役割を果たしています。この記事では、ベクトルデータベースの定義と重要性を探り、従来のデータベースとの比較を行い、2024年に考慮すべきトップ15のベクトルデータベースの詳細な概要を提供します。 ベクトルデータベースとは何ですか? ベクトルデータベースは、本質的にはベクトル化されたデータを効率的に処理するよう設計されています。従来のデータベースが構造化データのストレージに優れているのに対し、ベクトルデータベースは多次元空間でデータポイントを管理することに特化しており、人工知能、機械学習、自然言語処理などのアプリケーションに理想的です。 ベクトルデータベースの目的は、ベクトル埋め込み、類似性検索、高次元データの効率的な処理を容易にする能力にあります。従来のデータベースが非構造化データに苦労するかもしれない状況において、ベクトルデータベースはデータポイント間の関係や類似性が重要なシナリオで優れた性能を発揮します。 プロジェクトに適したベクトルデータベースの選び方 プロジェクトに適したベクトルデータベースを選ぶ際には、以下の要素を考慮してください: データベースをホストするためのエンジニアリングチームはありますか?それとも完全に管理されたデータベースが必要ですか? ベクトル埋め込みを持っていますか?それともベクトルデータベースによる生成が必要ですか? バッチ処理やオンライン処理などのレイテンシー要件 チーム内の開発者の経験 与えられたツールの学習曲線 ソリューションの信頼性 実装とメンテナンスのコスト セキュリティとコンプライアンス 2024年のデータサイエンスにおけるトップ15のベクトルデータベース 1. Pinecone ウェブサイト:Pinecone オープンソース:いいえ GitHubスター数:836 問題解決: Pineconeはクラウドネイティブなベクトルデータベースで、シームレスなAPIと煩雑なインフラストラクチャを提供しています。ユーザーはインフラストラクチャを管理する必要がなく、AIソリューションの開発と拡大に集中することができます。Pineconeはデータの素早い処理に優れており、メタデータフィルターとスパース-デンスインデックスをサポートして正確な結果を提供します。 主な特徴:…
サークルブームのレビュー:最高のAIパワードソーシャルメディアツール?
「サークルブームの参考文献として、サークルブームの力を発見してみてくださいそれは最高のAIパワードソーシャルメディアツールですか?」
「Streamlit、OpenAI、およびElasticsearchを使用してインテリジェントなチャットボットを作成する」
洗練されたユーザーエクスペリエンスを向上させるために、Streamlit、OpenAI、およびElasticsearchのシームレスな統合にダイブして、洗練された知的なチャットボットを作りましょう
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.