Learn more about Search Results がん - Page 9
- You may be interested
- 「Matplotlibを使用したプロットのスタイ...
- 「AIおよび自動化により、2030年に存在し...
- Pythonを使用した画像処理の紹介
- 増強と生産性のための人工知能
- 新しいツールが人々がAIモデルを評価する...
- 「5つのオンラインAI認定プログラム ̵...
- 「教室外での、オンライン試験による無指...
- 3Dインスタンスセグメンテーションにおけ...
- 「2023年のトップコンピュータビジョンツ...
- ランチェーン101:パート2c PEFT、LORA、...
- 「FinBERTとSOLID原則を活用して感情スコ...
- 「コーヒーマシンを介して侵害された R...
- このAI研究は、OpenAIの埋め込みを使用し...
- 「モンテカルロシミュレーションによる誤...
- 「紙からピクセルへ:手書きテキストのデ...
「トップ40以上の創発的AIツール(2023年12月)」
ChatGPT – GPT-4 GPT-4は、以前のモデルよりもより創造的で正確かつ安全なOpenAIの最新のLLMです。また、画像、PDF、CSVなどの多様な形式も処理できるマルチモーダル機能も備えています。コードインタープリターの導入により、GPT-4は独自のコードを実行して幻覚を防ぎ、正確な回答を提供することができます。 Bing AI Bing AIは、OpenAIのGPT-4モデルを搭載し、正確な回答を提供するためにウェブを横断することができます。また、ユーザーのプロンプトから画像を生成する能力も持っています。 GitHub Copilot GitHub Copilotは、コードを分析し、即座のフィードバックと関連するコードの提案を提供するAIコード補完ツールです。 DALL-E 2 DALL-E 2はOpenAIによって開発されたテキストから画像を生成するツールで、ユーザーのプロンプトに基づいてオリジナルの画像を作成します。不適切なユーザーリクエストを拒否するように設計されています。 Cohere Generate Cohere Generateは、AIの潜在能力を活用してビジネスプロセスを向上させるものです。メール、ランディングページ、製品の説明など、さまざまな要件に合わせたパーソナライズされたコンテンツを提供します。 AlphaCode AlphaCodeはDeepMindによって開発され、競争力のあるレベルでコンピュータプログラムを作成することができます。 Adobe Firefly…
「ファビオ・バスケスとともに、ラテンアメリカでデータサイエンスの開拓を行う」
Leading with Dataの今回の記事では、物理学者出身でコンピュータエンジニア兼データサイエンティストのFavio Vazquezに焦点を当てます。物理学修士号を持ち、宇宙論に深い関心を持つFavioは、H2O.aiに新たなビジネスを2,000,000ドル以上もたらすだけでなく、ラテンアメリカで20以上の顧客を獲得するのにも重要な役割を果たしました。物理学、計算、そしてインパクトのあるデータサイエンスの舞台の交差点において、Favioの旅路を探求し、深遠な洞察に迫ります。 このエピソードのLeading with Dataは、Spotify、Google Podcasts、Appleなど、人気のあるプラットフォームで聴くことができます。お好きなプラットフォームを選んで、洞察に満ちたコンテンツをお楽しみください! Favio Vazquezとの対話からの重要な洞察 データサイエンスへの移行は、科学計算の背景を持つ人々にとって予期せぬものですが、報酬があります。 データサイエンスのキャリアには、技術的専門知識とビジネスの勘がバランスよく求められ、実践的な経験が重視されます。 生成AIはデータサイエンスの未来を変えることになりますが、機械学習の基礎は依然として重要です。 データサイエンティストは競争力を維持し、革新的であるために、継続的な学習と業界のトレンドについての最新情報に優先度を置かなければなりません。 AIやデータサイエンスのリーダーとの洞察に満ちたディスカッションをするため、ぜひ次回のLeading with Dataセッションにご参加ください! それでは、Favio Vazquezがセッションで質問した内容と、彼がどのように回答したかを見ていきましょう! データサイエンスの旅はどのように始まりましたか? 私のデータサイエンスへの旅はまったく偶然でした。私はベネズエラ出身で、宇宙論と天体物理学に深い関心を持ちながら、物理学とコンピュータエンジニアリングを追求しました。私は物理学における計算の重要性の増大を予測しましたので、プログラミングや大規模な計算問題について学ぶことになりました。実際のデータサイエンスへの初めての触れは、データ解析を行う必要があったインターンシップの中で経験しました。科学的な観点からは機械学習には馴染みがありましたが、それをビジネスに応用することは新しいテリトリーでした。この経験が私の興味を引き、データマイニングと機械学習の探求を始め、それが私のデータサイエンスキャリアの始まりとなりました。 メキシコでのデータサイエンスエコシステム構築の初期の課題は何でしたか? メキシコに移住した際に、ラテンアメリカでのデータサイエンスコミュニティの構築の必要性を感じました。このビジョンを共有する他の人々と共に、カンファレンスの開催、知識の共有、地域の専門家とのつながりの形成を始めました。私たちは実質的に、ラテンアメリカでの最初のデータサイエンティストの波のための土台を築いていました。グローバルなトレンドに遅れないために、VoAGI、Towards Data…
In Japanese 「可視化フレームワークの種類」
あなたのニーズと理想的なビジュアライゼーションフレームワークをマッチさせる
「DynamoDB vs Cassandra:あなたのビジネスに適したデータベースを選ぶ」
イントロダクション デジタル時代において、データベースはどんなビジネスの基盤です。データベースはビジネスの運営や意思決定に必要な膨大なデータを格納、整理、管理する役割を果たします。適切なデータベースを選ぶことは、ビジネスの効率性、拡張性、収益性に大きな影響を与えることがあります。この記事では、DynamoDBとCassandraという2つの人気のあるデータベースについて、総合的な比較を提供し、より良い判断を支援します。 DynamoDBとは何ですか? Amazon Web Services(AWS)は2012年にDynamoDBを導入し、完全に管理されたNoSQLデータベースサービスとして提供しました。DynamoDBは高速かつ予測可能なパフォーマンス、シームレスなスケーラビリティを提供することで広く採用されています。低遅延のデータアクセス、自動スケーリング、組み込みのセキュリティなど、DynamoDBはさまざまな業界で人気を集めています。ゲーム、広告技術、IoTなど、リアルタイムのデータ処理が求められる業界で特に使用されます。 Cassandraとは何ですか? Facebookが2008年に開発したCassandraは、後にApacheでオープンソースとして公開されました。Cassandraは分散型のNoSQLデータベースであり、多数のコモディティサーバー上で大量のデータを処理し、単一障害点を持たない高い可用性を実現するよう設計されています。Cassandraの主な特徴には、直線的なスケーラビリティ、強力な障害耐性、柔軟なデータモデルなどがあります。Cassandraは金融、小売、通信などの分野で使用され、高い可用性と障害耐性が求められます。 DynamoDBとCassandraの詳細な比較 DynamoDBとCassandraを比較する際には、いくつかの要素が重要になります。 側面 DynamoDB Cassandra データモデル – キーバリューストア、オプションのセカンダリインデックスをサポート– 柔軟なスキーマをサポート– JSONのようなドキュメントサポート – ワイドカラムストア、テーブル、行、列をサポート– 複雑なデータ型をサポート– クエリにはCQL(Cassandra Query Language)を使用…
「クリスマスラッシュ」3Dシーンが今週の「NVIDIA Studio」でホリデーのチアをもたらします」
編集者の注記:この投稿は、我々の週刊「In the NVIDIA Studio」シリーズの一部であり、特集アーティストを称え、創造的なヒントやトリックを提供し、そしてNVIDIA Studioテクノロジーが創造的なワークフローを向上させる方法をデモンストレーションしています。 友達や家族、そして今週のIn the NVIDIA Studioアーティスト、3Dエキスパートボゾ・バロブによる美しく描かれたサンタのアニメーションを楽しむ季節です。 今週は、驚くべきマイルストーンも達成されました。NVIDIA RTXパワードのゲームとクリエイティブアプリが500以上、レイトレーシングやNVIDIA DLSSなどのAIパワードテクノロジーに対応して利用できます。Adobe Creative Cloudスイート、Autodesk Maya、Blender、Blackmagic DesignのDavinci Resolve、OBS、Unityなど、最も人気のあるアプリ120以上がRTXを使用してワークフローを数倍に加速し、新しいAIツールと機能を提供し、リアルタイムのレイトレーシングプレビューを可能にしています。 これを祝して、NVIDIA GeForceではギフトカード、希少な#RTXONキーボードキーキャップなどをプレゼントするキャンペーンを開催しています。参加方法については、GeForceのFacebook、Instagram、TikTok、またはX(以前のTwitter)をフォローしてください。 💚 THANK YOU FOR 500…
「アナコンダのCEO兼共同創業者、ピーターウォングによるインタビューシリーズ」
ピーター・ワンはAnacondaのCEO兼共同創設者ですAnaconda(以前はContinuum Analyticsとして知られる)を設立する前は、ピーターは15年間にわたり、3Dグラフィックス、地球物理学、大規模データシミュレーションと可視化、金融リスクモデリング、医療画像など、さまざまな分野でソフトウェアの設計と開発に取り組んできましたPyDataコミュニティとカンファレンスの創設者として、 […]
「AIと働き方の未来:AI時代における労働力の再教育」
AIは私たちの働き方を変えつつあり、それは想像以上の速さで進行しています毎週1億人以上が既にChatGPTを利用しており、半数以上の従業員がAIツールを仕事で使用していると回答しています確かにAIは特定の人々が仕事をより良く遂行するのに役立つでしょうが、多くの人々は未だに使用方法や利点について疑問を抱いています...
「大規模言語モデルの世界でどのように仕事に就く準備をするか?」
イントロダクション 人工知能の領域への貢献があなたの情熱ですか?このフィールドへの夢の入り口には、自然言語処理の専門知識と実践的な経験が必要です。さまざまなLarge Language Model (LLM)の知識と応用スキルを習得して、即戦力になりましょう。 人間の知能を模したGPT-4、Llama、Falconなど、多くのLLMが注目を浴びています。さらには、企業の58%が既にその恩恵を受けています。実際には しかし、ここがネックです! 多くの企業がまだ移行の段階にある中、スキルを習得して自分の位置を確保するのに今が最適な時期です。数百万から数十億のパラメータで訓練された言語モデルは驚くべきスコアと未開発のポテンシャルを持っています。正しいスキルを頭に備え、それらを現実のプロジェクトに適用することで、知識の山を簡単に越えることができます。LLMのエキサイティングな世界で即戦力になるための詳細は以下をお読みください! 主要なスキルと知識領域 LLMの世界で成功するための候補者を進化させる基本は、自然言語処理、機械学習、深層学習です。 NLPと機械学習の理解:LLMの能力の根源はNLPと機械学習にあります。これらはテキストの理解と生成の能力を提供します。NLPは言語理解を通じて人間とコンピュータの対話を結びつけます。命名エンティティ認識、感情分析、機械翻訳、対話分析などのNLPアプリケーションについての深い知識に加えて、異なる言語の言語構造に対する高度な理解が必要です。 さらに、プロンプトエンジニアリングのスキルにも重点を置くことが重要です。機械学習はデータの学習を容易にするためのアルゴリズムと統計モデルの開発を可能にします。LLMの世界では、ニューラルネットワークや教師あり・教師なし学習など、機械学習の概念に関する深い情報が必要です。MLフレームワークのPyTorchやTensorFlowでスキルを磨きましょう。 深層学習の取り込み:深層学習はニューラルネットワークの開発に焦点を当て、複雑な言語構造とデータ依存関係を捉えるために使用されます。学習することで、リカレントニューラルネットワークやトランスフォーマーの最大の潜在能力を活用することができます。候補者は深層学習のアーキテクチャやメモリネットワーク、注意機構などの高度な技術について深い知識を持っている必要があります。 ツール:Pythonなどのプログラミング言語の習熟度と、NumPy、pandas、scikit-learnなどの関連するライブラリの専門知識は必須です。また、GPUアクセラレーションの活用技術やGPUアーキテクチャに対してモデルを最適化する能力も非常に役立ちます。 独自のLLMの構築:医療、テキスト翻訳、コーディングなどの分野で、自分自身のLLMを構築することで経験を積みましょう。このプロセスでは、コアスキルに加えて注釈付け、ラベリング、他の人との協力などの専門知識を得ることができます。 教育の選択肢 どんなキャリアでも成功するための魅力的なコースは、目指すドメインの厳格なバックグラウンドを持つ候補者と、キャリア転換を希望する候補者の両方に柔軟性を提供します。必要な概念を基礎から理解し、より深い知識を習得することは、LLMのドメインでのキャリア準備には欠かせません。 仕事に関するタスクの複雑さによると、適切なスキルを持つことも同様に重要です。Analytics Vidhyaでは、最高のLLMのエキスパートを育成するための1対1のメンターシッププログラムを提供するGenAI Pinnacle Programを提供しています。ここでは、コアコンセプトについての洞察を得ることができ、200時間以上の学習体験と10以上のハンズオンの実世界プロジェクトで知識を応用する機会があります。 進展に合わせて進捗をテストするための課題で26以上のGenAI専門ツールとフレームワークを使いこなすことにも慣れていきましょう。週に一度のメンターシップセッションは、GenAIプロフェッショナルになるためのカスタマイズされたものです。また、75以上の専門家セッションでは、業界の最新情報をリアルタイムで提供します。Analytics Vidhyaとともに、革新を力にして将来の明るい未来をLLMのフィールドで築きましょう。 ハンズオンプロジェクト…
シンガポールがAIワークフォースを3倍に増やす予定
シンガポールは、人工知能の分野に目を向けています。国家AI戦略(NAIS)2.0の発表により、この都市国家は次の3〜5年でAIの労働力を15,000人にまで増やす計画です。この野心的なイニシアチブは、シンガポールの技術的な風景だけでなく、社会の構造も再構築するものとなるでしょう。 見習いによる人材育成 才能のプールを強化するために、シンガポール政府はすでに300人以上の卒業生を輩出した見習いプログラムを改革することを目指しています。多様な産業のAIプロダクト開発チームとの強化された協力により、参加者には実世界の経験が提供されます。この多角的なアプローチは、クリエイターとユーザーのギャップを埋めるダイナミックなエコシステムを育成することを目指しています。 戦略的なAIの統合 NAIS 2.0では、すべての企業でのAIの導入を奨励することに重要な重点を置いています。産業変革マップと職業変革マップによってガイドされるターゲットトレーニングプログラムは、労働力のスキルアップに不可欠です。その目標は、製造業、金融サービス、輸送、物流、バイオ医学などのセクターにAIをシームレスに統合することです。 未開のAI領域 副首相のローレンス・ウォンは、発表会で変革の道程について強調しました。人間の認知能力に似た機械によって特徴づけられるAIの進化する風景は、包括的な国家戦略を要求しています。フラッグシッププロジェクトからシステムアプローチへのシフトにより、AIは単なる機会ではなく、シンガポールの未来にとって必要不可欠なものとして位置付けられています。 倫理的なAIガバナンス AIの倫理的な影響についての懸念に対処するため、シンガポールの規制アプローチはイノベーションの促進とセーフガードの実施の微妙なバランスを求めています。更新されたモデルガバナンスフレームワークとAI Verifyツールキットは、責任ある開発を確保することを目指しています。ウォン副首相は、定期的なレビューと調整が行われる「目的に適した」規制環境の必要性を強調しました。 私たちの意見 シンガポールのグローバルリーダーシップへのコミットメントは、変革的な技術の課題と機会に対する積極的なアプローチを反映しています。この国がさまざまな領域で優れた研究、基盤整備、国際パートナーシップを追求することは、先例を打ち立てています。シンガポールカンファレンスの開催はその意義があり、全世界での協力とアイデア交換の場を提供します。シンガポールの国家AI戦略2.0は、単なるアップデート以上のものです。この国はAIの力をどのように認識し活用するかを再定義しています。この未開の領域に進む中、シンガポールは世界に招待し、関与することを求めています。この変革的な旅は、グローバルなAIの未来を形作っています。
IBMの「Condor」量子コンピュータは1000以上のキュービットを持っています
「IBMは2つの量子コンピュータを発表しました一つはこれまでに作られた中で2番目に大きく、もう一つは同社がこれまでに製造したいかなる量子コンピュータよりもエラーが少ないものです」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.