Learn more about Search Results いくつかの - Page 9

「EUの新しいAI法案の主なポイント、初の重要なAI規制」

「欧州連合による人工知能の規制イニシアチブは、テクノロジーの法的・倫理的なガバナンスにおいて重要な時点を迎えています最近のAI法案により、EUはAIシステムによって生じる複雑さや課題に対処するため、主要な世界的な組織の中で最初の一歩を踏み出しましたこの法案は、単なる立法上のマイルストーンではありません[...]」

トランザクション分析:情報を解放し、貸し出しの判断をするための洞察を得る

「よりダイナミックで包括的で効率的な金融の景観を追求するために、トランザクション分析の変革力を探求してください」

アリゾナ州立大学のこのAI研究は、テキストから画像への非拡散先行法を改善するための画期的な対照的学習戦略「ECLIPSE」を明らかにした

拡散モデルは、テキストの提案を受け取ると、高品質な写真を生成するのに非常に成功しています。このテキストから画像へのパラダイム(T2I)の生成は、深度駆動の画像生成や主題/セグメンテーション識別など、さまざまな下流アプリケーションで成功裏に使用されています。2つの人気のあるテキスト条件付き拡散モデル、CLIPモデルと潜在的な拡散モデル(LDM)のような、しばしば安定拡散と呼ばれるモデルは、これらの進展に不可欠です。LDMは、オープンソースソフトウェアとして自由に利用可能なことで研究界で知られています。一方、unCLIPモデルにはあまり注目が集まっていません。両モデルの基本的な目標は、テキストの手がかりに応じて拡散モデルをトレーニングすることです。 テキストから画像への優位性と拡散画像デコーダを持つunCLIPモデルとは異なり、LDMには単一のテキストから画像への拡散モデルがあります。両モデルファミリーは、画像のベクトル量子化潜在空間内で動作します。unCLIPモデルは、T2I-CompBenchやHRS-Benchmarkなどのいくつかの構成ベンチマークで他のSOTAモデルを上回ることが多いため、この記事ではそれに集中します。これらのT2Iモデルは通常多くのパラメータを持つため、トレーニングには優れた画像とテキストのペアリングが必要です。LDMと比較すると、DALL-E-2、Karlo、KandinskyなどのunCLIPモデルは、約10億のパラメータを持つ前のモジュールがあるため、合計モデルサイズが大幅に大きくなります(≥ 2B)。 そのため、これらのunCLIPモデルのトレーニングデータは250M、115M、177Mの画像テキストのペアリングです。したがって、2つの重要な質問が残ります:1)テキスト構成のSOTAパフォーマンスは、テキストから画像への先行モデルを使用することで改善されるのでしょうか?2)それともモデルのサイズを増やすことが重要な要素なのでしょうか?パラメータとデータの効率性を向上させることで、研究チームはT2I先行モデルについての知識を向上させ、現在の形式に比べて重要な改善を提供することを目指しています。T2I先行モデルは、拡散プロセスの各タイムステップでノイズのない画像埋め込みを直接推定するための拡散モデルでもあり、これは以前の研究が示唆しているようです。研究チームは、この前期の普及プロセスを調査しました。 図1は、SOTAテキストから画像へのモデル間の3つの構成タスク(色、形、テクスチャ)の平均パフォーマンスとパラメータの総数を比較しています。ECLIPSEは少量のトレーニングデータしか必要とせず、少ないパラメータでより優れた結果を出します。提示されたECLIPSEは、Kandinskyデコーダを使用して、わずか5百万の画像テキストペアリングのみを利用して約3300万のパラメータでT2I先行モデルをトレーニングします。 研究チームは、拡散プロセスがわずかにパフォーマンスを低下させ、正しい画像の生成には影響を与えないことを発見しました。さらに、拡散モデルは収束が遅いため、トレーニングには大量のGPU時間または日数が必要です。そのため、非拡散モデルはこの研究では代替手段として機能します。分類子のガイダンスがないため、この手法は構成の可能性を制限するかもしれませんが、パラメータの効率性を大幅に向上させ、データの依存性を軽減します。 本研究では、Arizona State Universityの研究チームは、上記の制約を克服し、T2Iの非拡散先行モデルを強化するためのユニークな対照的学習技術であるECLIPSEを紹介しています。研究チームは、提供されたテキスト埋め込みから画像埋め込みを生成する従来のアプローチを最適化することにより、Evidence Lower Bound(ELBO)を最大化しました。研究チームは、事前学習されたビジョン言語モデルの意味的整合性(テキストと画像の間)機能を使用して、以前のトレーニングを監視しました。研究チームは、ECLIPSEを使用して、画像テキストのペアリングのわずかな断片(0.34%〜8.69%)を使用して、コンパクトな(97%小さい)非拡散先行モデル(3300万のパラメータを持つ)をトレーニングしました。研究チームは、ECLIPSEトレーニングされた先行モデルをunCLIP拡散画像デコーダバリエーション(KarloとKandinsky)に導入しました。ECLIPSEトレーニングされた先行モデルは、10億のパラメータを持つバージョンを上回り、ベースラインの先行学習アルゴリズムを上回ります。研究結果は、パラメータやデータを必要とせずに構成を改善するT2I生成モデルへの可能な道を示唆しています。 図1に示すように、彼らの総合パラメータとデータの必要性は大幅に減少し、T2Iの増加により類似のパラメータモデルに対してSOTAのパフォーマンスを達成します。貢献。1)unCLIPフレームワークでは、研究チームがテキストから画像への事前の対照的な学習に初めてECLIPSEを提供しています。 2)研究チームは包括的な実験を通じて、資源制約のある文脈でのECLIPSEの基準事前に対する優位性を証明しました。 3)注目すべきは、ECLIPSE事前のパフォーマンスを大きなモデルと同等にするために、トレーニングデータのわずか2.8%とモデルパラメータのわずか3.3%しか必要としないことです。 4)また、研究チームは現在のT2I拡散事前の欠点を検討し、経験的な観察結果を提供しています。

グーグルはコントロールを失っている – CTR操作から大量のAIコンテンツまで

人工知能(AI)の時代は私たちに迫っており、私たちの日常生活を形作り続けていますAIによるコンテンツの人気が高まる中、スマートなアルゴリズムが新しい記事から製品の説明まで作成を支援することができるようになりました最大の検索エンジンであるGoogleも、この革命から免れませんもし... Googleの制御を失う - CTR操作から大量のAIコンテンツへ続く記事を読む»

『GPT-4を使用したパーソナライズされたAIトレーディングコンサルタントの構築』

はじめに 近年、人工知能(AI)を株式取引に統合することで、投資家の意思決定に革命が起きています。GPT-3やGPT-4などの大規模言語モデル(LLMs)の登場により、複雑な市場分析や洞察が個々の投資家やトレーダーによりアクセスしやすくなりました。この革新的なテクノロジーは、膨大なデータと高度なアルゴリズムを活用して、かつて機関投資家の専売特許であった市場の理解を提供するものです。この記事では、リスク許容度、投資期間、予算、および期待利益に基づいた個別の投資プロファイルに合わせた、パーソナライズされたAI取引コンサルタントの開発に焦点を当てており、個人投資家に戦略的な投資アドバイスを提供することで彼らを強化しています。 GPT-3やGPT-4といった大規模言語モデル(LLMs)によって動かされる株式取引コンサルタントは、金融アドバイザリーサービスに革命をもたらしました。これらのコンサルタントは、AIを活用して過去の株式データや最新の金融ニュースを分析し、投資家の独自のポートフォリオと金融目標に合ったパーソナライズされた投資アドバイスを提供できます。本記事では、市場の動向やトレンドを予測するためのコンサルタントの構築に挑戦し、個別のリスク許容度、投資期間、投資可能な資金、および期待利益に基づいたカスタマイズされた推奨事項を提供します。 学習目標 本記事の終わりまでに、読者は以下のことができるようになります: AIやGPT-3などのLLMsが株式市場分析や取引をどのように変革するかについて洞察を得る。 AI主導のツールが個別のリスクプロファイルと投資目標に基づいたパーソナライズされた投資アドバイスを提供する能力を認識する。 AIが過去とリアルタイムのデータを活用して投資戦略と予測を立案する方法を学ぶ。 AIを用いた株式取引が、小売投資家を含むより広範なユーザーに洗練された投資戦略を提供する方法を理解する。 パーソナル投資や株式取引での情報を活用した意思決定のためにAI主導のツールを活用する方法を発見する。 LLMsを活用した株式取引コンサルタントのコンセプト この記事はData Science Blogathonの一部として公開されました。 データセットについて このプロジェクトのためのデータセットは、ニューヨーク証券取引所からのものであり、Kaggleで利用可能です。このデータセットには、7年間にわたる4つのCSVファイルが含まれています。重要な財務尺度を提供する「fundamentals.csv」、株式分割に関する過去の株価と調整を提供する「prices.csv」と「prices-split-adjusted.csv」、セクター分類や本社などの追加の企業情報を提供する「securities.csv」が含まれています。これらのファイルは、企業のパフォーマンスと株式市場の動向を包括的に把握するためのものです。 データの準備 GPT-4のような大規模言語モデル(LLMs)を使用した株式取引コンサルタントの実装は、重要なデータの準備から始まります。このプロセスには、データのクリーニング、正規化、カテゴリ化といった重要なタスクが含まれ、提供されたデータセット「fundamentals.csv」「prices.csv」「prices-split-adjusted.csv」「securities.csv」を使用します。 ステップ1:データのクリーニング 「Fundamental Dataset」では、「For Year」「Earnings Per Share」「Estimated…

「vLLMの解読:言語モデル推論をスーパーチャージする戦略」

イントロダクション 大規模言語モデル(LLM)は、コンピュータとの対話方法を革新しました。しかし、これらのモデルを本番環境に展開することは、メモリ消費量と計算コストの高さのために課題となることがあります。高速なLLM推論とサービングのためのオープンソースライブラリであるvLLMは、PagedAttentionと呼ばれる新しいアテンションアルゴリズムと連携して、これらの課題に対処します。このアルゴリズムは効果的にアテンションのキーと値を管理し、従来のLLMサービング方法よりも高いスループットと低いメモリ使用量を実現します。 学習目標 この記事では、以下の内容について学びます: LLM推論の課題と従来のアプローチの制約を理解する。 vLLMとは何か、そしてどのように機能するのか理解する。 vLLMを使用したLLM推論のメリット。 vLLMのPagedAttentionアルゴリズムがこれらの課題を克服する方法を発見する。 vLLMを既存のワークフローに統合する方法を知る。 この記事はData Science Blogathonの一環として公開されました。 LLM推論の課題 LLMは、テキスト生成、要約、言語翻訳などのタスクでその価値を示しています。しかし、従来のLLM推論手法でこれらのLLMを展開することはいくつかの制約を抱えています: 大きなメモリフットプリント:LLMは、パラメータや中間アクティベーション(特にアテンションレイヤーからのキーと値のパラメータ)を保存するために大量のメモリを必要とし、リソースに制約のある環境での展開が困難です。 スループットの限定:従来の実装では、大量の同時推論リクエストを処理するのが難しく、スケーラビリティと応答性が低下します。これは、大規模言語モデルが本番サーバーで実行され、GPUとの効果的な連携が行えない影響を受けます。 計算コスト:LLM推論における行列計算の負荷は、特に大規模モデルでは高額になることがあります。高いメモリ使用量と低いスループットに加えて、これによりさらにコストがかかります。 vLLMとは何か vLLMは高スループットかつメモリ効率の良いLLMサービングエンジンです。これは、PagedAttentionと呼ばれる新しいアテンションアルゴリズムと連携して、アテンションのキーと値をより小さな管理しやすいチャンクに分割することで効果的に管理します。このアプローチにより、vLLMのメモリフットプリントが削減され、従来のLLMサービング手法と比べて大きなスループットを実現することができます。テストでは、vLLMは従来のHuggingFaceサービングよりも24倍、HuggingFaceテキスト生成インファレンス(TGI)よりも2〜5倍高速になりました。また、連続的なバッチ処理とCUDAカーネルの最適化により、インファレンスプロセスをさらに洗練させています。 vLLMのメリット vLLMは従来のLLMサービング手法よりもいくつかの利点を提供します: 高いスループット:vLLMは、最も人気のあるLLMライブラリであるHuggingFace Transformersよりも最大24倍の高いスループットを実現できます。これにより、より少ないリソースでより多くのユーザーに対応することができます。 低いメモリ使用量:vLLMは、従来のLLMサービング手法と比べて非常に少ないメモリを必要とするため、ソフトハードウェアのプラットフォームに展開する準備ができています。…

トゥギャザーアイは、ShortおよびLongコンテキストの評価で最高のオープンソーストランスフォーマーに対抗する、StripedHyena-7Bという代替人工知能モデルを紹介します

AIと共に、シーケンスモデリングアーキテクチャへの大きな貢献を果たし、StripedHyenaモデルを導入しました。従来のトランスフォーマーに代わる選択肢を提供することで、計算効率とパフォーマンスを向上させることで、このフィールドを革新しました。 このリリースには、ベースモデルのStripedHyena-Hessian-7B(SH 7B)とチャットモデルのStripedHyena-Nous-7B(SH-N 7B)が含まれています。StripedHyenaは、昨年作成されたH3、Hyena、HyenaDNA、およびMonarch Mixerといった効果的なシーケンスモデリングアーキテクチャの学習からの重要な知見に基づいています。 研究者は、このモデルが長いシーケンスをトレーニング、ファインチューニング、および生成する際に、高速かつメモリ効率が向上していることを強調しています。StripedHyenaは、ゲート付き畳み込みとアテンションを組み合わせたハイエナオペレータと呼ばれるものによって、ハイブリッド技術を使用しています。また、このモデルは、強力なトランスフォーマーベースモデルと競合する初めての代替アーキテクチャです。OpenLLMリーダーボードのタスクを含むショートコンテキストのタスクでは、StripedHyenaはLlama-2 7B、Yi 7B、およびRWKV 14Bなどの最強のトランスフォーマーの代替アーキテクチャを上回っています。 このモデルは、ショートコンテキストのタスクと長いプロンプトの処理において、さまざまなベンチマークで評価されました。Project Gutenbergの書籍によるPerplexityスケーリング実験では、Perplexityが32kで飽和するか、このポイントを超えて減少することから、モデルがより長いプロンプトから情報を吸収する能力を示しています。 StripedHyenaは、アテンションとゲート付き畳み込みを組み合わせたユニークなハイブリッド構造によって効率を実現しています。研究者は、このハイブリッドデザインを最適化するために革新的な接ぎ木技術を使用したと述べており、トレーニング中にアーキテクチャの変更を可能にしました。 研究者は、StripedHyenaの重要な利点の1つは、トレーニング、ファインチューニング、および長いシーケンスの生成など、さまざまなタスクにおける高速性とメモリ効率の向上です。最適化されたTransformerベースラインモデルと比較して、StripedHyenaはFlashAttention v2とカスタムカーネルを使用して、32k、64k、および128kの行でエンドツーエンドトレーニングにおいて30%、50%、および100%以上優れています。 将来、研究者はStripedHyenaモデルでいくつかの領域で大きな進歩を遂げたいと考えています。彼らは、長いコンテキストを処理できるより大きなモデルを作成し、情報理解の限界を拡大したいと考えています。さらに、テキストや画像などのさまざまなソースからデータを処理して理解できるようにすることで、モデルの適応性を高めるためのマルチモーダルサポートを取り入れたいとしています。 最後に、StripedHyenaモデルは、ゲート付き畳み込みなどの追加計算を導入することによって、Transformerモデルに対して改善の余地を持っています。このアプローチは、線形アテンションに触発されたものであり、H3やMultiHyenaなどのアーキテクチャにおいて効果が証明されており、トレーニング中のモデルの品質を向上させ、推論効率に利点を提供します。

「このAI研究は、グラフ上の大規模言語モデル(LLM)について包括的な概要を共有します」

よく知られたLarge Language Models(LLMs)であるGPTやBERT、PaLM、LLaMAは、自然言語処理(NLP)と自然言語生成(NLG)においていくつかの大変な進歩をもたらしました。これらのモデルは大規模なテキストコーパスで事前学習され、質問応答やコンテンツ生成、要約など、複数のタスクで驚異的なパフォーマンスを発揮しています。 LLMsは平文のテキストを扱うことができることが証明されていますが、テキストデータがグラフ形式の構造情報とリンクされたアプリケーションを扱う必要性がますます高まっています。研究者たちは、LLMsの良好なテキストベースの推論力を活用して、マッチングサブグラフ、最短パス、接続推論などの基本的なグラフの推論タスクにLLMsをどのように適用できるかを研究しています。LLMsの統合に関連付けられているグラフベースのアプリケーションには、純粋なグラフ、テキスト豊かなグラフ、テキスト対応グラフの3つのタイプがあります。これらの機能とGNNとの相互作用に応じて、LLMsをタスク予測器、GNNの特徴エンコーダー、またはGNNとのアライナーとして扱うテクニックがあります。 LLMsはグラフベースのアプリケーションでますます人気が高まっていますが、LLMsとグラフの相互作用を調査する研究は非常に少ないです。最近の研究では、研究チームが大規模な言語モデルとグラフの統合に関連した状況と方法の体系的な概要を提案しています。目的は、テキスト豊かなグラフ、テキスト対応グラフ、純粋なグラフの3つの主要なカテゴリに可能な状況を整理することです。チームは、アライナー、エンコーダー、または予測器としてLLMsを使用する具体的な方法を共有しています。各戦略には利点と欠点があり、リリースされた研究の目的はこれらのさまざまなアプローチを対比することです。 チームは、LLMsをグラフ関連の活動で使用する利点を示すことで、これらの技術の実用的な応用に重点を置いています。チームは、これらの方法の適用と評価を支援するためのベンチマークデータセットとオープンソーススクリプトに関する情報を共有しています。結果は、この急速に発展している分野でのさらなる研究と創造性の必要性を強調して、可能な将来の研究トピックを概説しています。 チームは、彼らの主な貢献を以下のようにまとめています。 チームは、言語モデルがグラフで使用される状況を体系的に分類することで貢献を果たしました。これらのシナリオは、テキスト豊かな、テキスト対応、純粋なグラフの3つのカテゴリに整理されています。この分類法は、さまざまな設定を理解するための枠組みを提供します。 言語モデルは、グラフのアプローチを用いて詳細に分析されました。評価は、さまざまなグラフ状況の代表的なモデルをまとめたもので、最も徹底的なものとなっています。 言語モデルをグラフに関連する研究に関連して、実世界の応用、オープンソースのコードベース、ベンチマークデータセットなど、多くの資料がキュレーションされています。 言語モデルをグラフでのさらなる研究のための6つの可能な方向が提案されており、基本的なアイデアを掘り下げています。

「RAGAsを使用したRAGアプリケーションの評価」

「PythonにおいてRAGAsフレームワークを使って、検索および生成コンポーネントを個別に評価するための検索強化生成(RAG)システムの評価」

「ビームサーチ:シーケンスモデルでよく使われるアルゴリズム」

あなたがAI言語モデルであり、ChatGPTのように文章を完成させるとします次の単語を選ぶ方法は、単に文法的に正しいだけでなく、文脈に即したものになるようにするのですこれがBeamの役割です...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us