Learn more about Search Results こちら - Page 99

ChatGPTでお金を稼ぐ5つの方法

もしChatGPTでお金を稼げるとは信じていないなら、この記事の終わりまでには信じるようになるでしょう

TaatikNet(ターティクネット):ヘブライ語の翻字のためのシーケンス・トゥ・シーケンス学習

この記事では、TaatikNetとseq2seqモデルの簡単な実装方法について説明していますコードとドキュメントについては、TaatikNetのGitHubリポジトリを参照してくださいインタラクティブなデモについては、HF Spaces上のTaatikNetをご覧ください多くのタスク...

プロンプトエンジニアリングへの紹介

イントロダクション 自然言語処理は、基盤となる技術や手法を使用した実装の豊かな領域であります。近年、特に2022年の始まり以来、自然言語処理(NLP)と生成型AIは進化を遂げています。これにより、プロンプトエンジニアリングは、言語モデル(LM)をマスターするために理解する必要のある特別なスキルとなりました。 学習目標 プロンプト、プロンプトエンジニアリング、および例の理解 プロンプトを洗練させるためのヒント プロンプトとプロンプトのパターンの要素 プロンプトの技法 プロンプトエンジニアリングの知識は、大規模な言語モデル(LLM)を基本的に使用する際の能力と制限をより良く理解するのに役立ちます。 この記事は、データサイエンスブログマラソンの一部として公開されました。 プロンプトエンジニアリングとは何ですか? プロンプトエンジニアリングは、人工知能の自然言語処理の分野で、AIが行うべきことをテキストで説明する実践です。この入力によってガイドされ、AIは出力を生成します。これは、人間が理解できるテキストを対話的にモデルとコミュニケーションするためのもので、タスクの説明が入力に埋め込まれているため、モデルは柔軟に動作し、可能性が広がります。 詳細はこちらをご覧ください:プロンプトエンジニアリング:パワフルなプロンプトの作成のアート プロンプトとは何ですか? プロンプトは、モデルから期待される出力の詳細な説明です。これはユーザーとAIモデルの間の対話です。これにより、エンジニアリングについてより理解が深まります。 プロンプトの例 ChatGPTやGPT-3などの大規模な言語モデルで使用されるプロンプトは、単純なテキストクエリの場合もあります。これらは提供できる詳細の量によって品質が測定されます。これらは、テキスト要約、質問と回答、コード生成、情報抽出などに使用されます。 多くの指示が含まれる複雑な問題を解決するためにLLMが使用されるため、詳細であることが重要です。基本的なプロンプトのいくつかの例を見てみましょう: プロンプト 抗生物質は、細菌感染症を治療するために使用される薬の一種です。それらは細菌を殺したり、増殖を防いだりすることで、体の免疫系が感染症と戦えるようにします。抗生物質は通常、錠剤、カプセル、液体溶液の形で経口的に摂取され、時には静脈内投与されます。抗生物質はウイルス感染症には効果がなく、不適切に使用すると抗生物質耐性が生じることがあります。 上記を2文に要約してください: この出力はQ&Aの形式で要約を表示します。 抗生物質は、細菌感染症を殺菌または増殖を防ぎ、免疫系が感染症と戦えるようにします。経口または静脈内投与され、ウイルス感染症には効果がなく、抗生物質耐性を引き起こす可能性があります。 LLMの使用例を見ました。可能性は無限です。 プロンプトを洗練させるためのヒント…

ビッグデータアプリケーションのクラウドストレージコストの管理

増加し続けるデータ量への依存度の高まりにより、現代の企業は高容量かつ高スケーラビリティのあるデータストレージソリューションにより、これまで以上に依存しています多くの企業にとって、これは...

テーブル内の重複した値を見つけるための最高のSQLトリック2つ

まず、重複行の基準を定義してくださいテーブルから重複レコードを見つける方法の一つは、GROUP BYとHAVINGですもう一つの方法はROW_NUMBER()です詳細はこちらをご覧ください

PyTorchを使った効率的な画像セグメンテーション:Part 2

これは、PyTorchを使用してディープラーニング技術を使ってゼロから画像セグメンテーションをステップバイステップで実装する4部作シリーズの第2部ですこの部分では、ベースライン画像の実装に焦点を当てます...

データ管理とは何か、そしてなぜ重要なのか?

イントロダクション データは、ある意味でビジネス界においてすべてです。少なくとも、データ分析、予測、そして適切に計画を立てることなしに世界を想像するのは難しいです!Cレベルのエグゼクティブの95%がビジネス戦略にデータが必要不可欠だと考えています。結局のところ、より深い知識が必要で、より大きな可能性を引き出し、意思決定を改善するためには、どの組織も知っておく必要があります。しかし、すべてを手に入れるには、この中でデータ管理の欠かせない役割を理解する必要があります。データ管理とは何か?それについてすべて知るために読み続けてください! 組織におけるデータ管理とは何ですか? データ管理とは、組織のデータ分析業務に必要なデータの収集、整理、変換、および保存です。このプロセスは、様々な目的、例えば洞察を得たり、マーケティングキャンペーンを計画するためのクリーンできちんと管理されたデータのみを保証します。データが見つけやすく、視覚化や微調整ができる場合、組織は具体的な洞察を得て、情報に基づいた意思決定を行うのに役立ちます。 主要なコンポーネントと目標 効果的なデータの取り扱いと制御は、データ管理のいくつかのコンポーネントと目標の結果です。各要因が特定の計画や次の行動を促進するようになっています。だから、あなたがそれが何であるかを知っているなら、次に、実践を導入するさまざまな側面と目標があります: データ品質 データの品質と正確性を保証することは、主要な目的の1つです。これには、データを検証しクレンジングするためのプロセスとコントロールを実装し、エラーを特定して修正し、一貫性のないレコードを排除することが含まれます。高いデータ品質基準は、正確な情報の信頼性を強化し、意思決定、報告、および分析を支援します。 データセキュリティ データ管理の目的について答えることができないのは、セキュリティについて言及しないことです。認可されていないアクセス、侵害、および損失からのデータ保護は、データ管理の重要な目的です。これには、暗号化、ユーザー認証、アクセス制御、およびデータバックアップ戦略などのセキュリティ対策が含まれます。データを保護することで、組織は顧客の信頼を維持し、データ保護規制に準拠し、潜在的なリスクに対処できます。 データガバナンス データガバナンスとは、組織内のデータ資産の総合的な管理と制御を意味します。データを管理するための役割、責任、およびプロセスを定義するためのポリシー、手順、およびフレームワークを確立することを目的としています。データガバナンスを実践している組織は、そうでない組織よりも42%自信があります。これには、データの所有権を定義し、データ基準を確立し、規制に準拠することが含まれます。 データアクセシビリティ データ管理では、認可されたユーザーがデータに簡単にアクセスできるようにすることに重点が置かれています。組織は、効率的なデータストレージと取得のメカニズムを確立し、データアーカイブとバックアップ戦略を実装し、データインフラストラクチャとシステムを最適化して、利用可能性とアクセシビリティを簡単にします。これにより、運用効率が向上し、意思決定が改善されます。 データ管理ライフサイクル データ管理ライフサイクルとは、異なる段階でデータを管理することです。データの最大の可能性を引き出すためのさまざまなプラクティスをカバーしています。ここでは、ライフサイクルの概要を示します: データ収集:基礎的な段階で、内部システム、外部パートナー、または公開リポジトリなどからデータを収集します。データの正確性と完全性を確保するために、データ品質チェックと検証プロセスを実行することがあります。 データストレージ:データが収集されたので、それを保存して整理する時が来ました。この段階では、適切なデータストレージツールと技術、データベース設計、データモデリング、およびインデックス戦略を決定することが含まれます。この段階では、アクセス制御や暗号化などのデータセキュリティ対策も実装されます。 データ変換:データは、適切な分析のために包括的な形式に統合および変換する必要があることが多いです。このDMLCの段階には、データクレンジング、データ統合、データ変換、およびデータエンリッチメントのプロセスが含まれます。 データアーカイブ:データが主目的を果たした後、将来の使用またはコンプライアンス要件のためにアーカイブまたは保持するのが最善です。このプロセスには、データ保持ポリシーを確立し、ストレージ中のデータのセキュリティを確保し、長期的なデータ保存のためのさまざまな戦略を実装することが含まれます。 データ廃棄:データがもはや必要ではありませんか?目的に到達しましたか?はいなら、廃棄する時間です。最後の段階で、組織は関係のないデータを廃棄します。これは主にプライバシーを保護し、データ保護規制に準拠するためのものです。 主要なコンセプト データ管理では、データの整理、処理、利用を効果的にするために必要なさまざまな重要なコンセプトが結集しています。以下に、4つの基本的なコンセプトを示します: データ・ガバナンス…

SiMa.aiが世界最強のAIチップをインドに持ち込む

アメリカのAIチップスタートアップ、SiMa.aiは、初代AIチップの量産を発表し、画期的な進展を遂げました。TSMC 16nmテクノロジーを利用し、SiMa.aiは産業界にAI革命をもたらすことを目的としています。一般的な手法が一つのチップで全てを対応するのに対し、SiMa .aiのMLSoC(Chip on a Machine Learning System)はエッジコンピューティングに特化して設計されています。この重要な進展により、産業分野において転換期を迎えることになります。 同様に読まれている記事:台湾企業が現代AIのバックボーンになった経緯 AIと機械学習で産業界を21世紀に引き上げる 創設者兼CEOのKrishna Rangasayee氏は、AIと機械学習によって物理的な世界に大きな改善がもたらされる可能性に興奮しています。SiMa.aiは、最先端の技術で産業界を21世紀に導くことを目指しています。彼らのビジョナリーなアプローチは、スマートカー、ドローン、高度なロボットなど多岐にわたる分野での革新を促進することを目的としています。 同様に読まれている記事:DeepMind RoboCat: 自己学習型ロボットAIモデル SiMa.aiが生成AI埋め込みエッジの未来に備える Rangasayee氏は声明で、SiMa.aiが生成AI埋め込みエッジの未来に備えていることを明らかにしました。クラウド、エッジ、またはモバイル電話の空間で作業しているかどうかに関係なく、生成AIと大規模言語モデル(LLM)が誰の革新にとっても不可欠なものになると信じているRangasayee氏は、これらの技術を採用することの重要性を強調しました。SiMa.aiの生成AIを先駆的に推進する取り組みは、産業界を革新する先見性のあるアプローチを示しています。 埋め込みエッジスペースにおける生成AIの台頭 生成AIは、近年著しい進展を遂げ、現在は埋め込みエッジスペースへ進出しています。Rangasayee氏は、生成AIがエンタープライズやエッジアプリケーションを含む実世界のアプリケーションへ移行していることに興味を持っています。生成AIの認知度と採用の拡大に伴い、この技術の変革的なポテンシャルはますます明らかになっています。生成AIの影響は急速に拡大し、世界中の10億人を魅了し、産業を再構築しています。 詳しくはこちら:DataHack Summit 2023にて、Diffusion Modelsによる生成AIの無限の世界を学ぶ非凡な学習体験に参加してください。 AIエッジデバイス上でLLMを実行することは有望なトレンド…

なぜ仮説検定はハムレットからヒントを得るべきか

もし科学者またはデータ専門家である場合、あなたの仮説検定手順には、通常のコースワークから悲劇的に(あるいは悲喜劇的に?)省略される重要なステップが欠けている可能性があります...

機械革命の始まりですか?

人工知能、機械学習、自動化によって推進される機械革命は、人類史上重要な転換点を迎えています詳しくはこちら!

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us