Learn more about Search Results リリース - Page 96
- You may be interested
- 「マイクロソフトリサーチがAIコンパイラ...
- 「ディープラーニングベースのフレームワ...
- カリフォルニア州のDMVがクルーズの展開や...
- 新たなAIツールは、より高度な天体生物学...
- 探索的データ解析:データセットの中に隠...
- ウェイブは、LINGO-1という新しいAIモデル...
- 「PythonでゼロからGANモデルを構築および...
- 消失勾配問題と爆発勾配問題:ニューラル...
- 2023年に使用するための10の最高のAI画像...
- ビデオ編集は、VideoCrafterとともに新し...
- あなた全体に装着可能なロボットアシスタント
- Nvidiaは、エンジニア向けに生成AIを試験...
- 仕事を加速するAIツール16選
- 「Google の CEO Sundar Pichai は AI を...
- 「AIおよびARはデータ需要を推進しており...
今日、開発者の70%がAIを受け入れています:現在のテックの環境での大型言語モデル、LangChain、およびベクトルデータベースの台頭について探求する
人工知能には無限の可能性があります。それは、新しいリリースや開発によって明らかになっています。OpenAIが開発した最新のチャットボットであるChatGPTのリリースにより、AIの領域はGPTのトランスフォーマーアーキテクチャのおかげで常に注目を浴びています。ディープラーニング、自然言語処理(NLP)、自然言語理解(NLU)からコンピュータビジョンまで、AIは無限のイノベーションをもたらす未来へと皆を推進しています。ほぼすべての産業がAIの潜在能力を活用し、自己革新を遂げています。特に大規模言語モデル(LLMs)、LangChain、およびベクトルデータベースの領域での優れた技術的進歩がこの素晴らしい発展の原動力です。 大規模言語モデル 大規模言語モデル(LLMs)の開発は、人工知能における大きな進歩を表しています。これらのディープラーニングベースのモデルは、自然言語を処理し理解する際に印象的な正確さと流暢さを示します。LLMsは、書籍、ジャーナル、Webページなど、さまざまなソースからの大量のテキストデータを使用してトレーニングされます。言語を学ぶ過程で、LLMsは言語の構造、パターン、および意味的な関連性を理解するのに役立ちます。 LLMsの基本的なアーキテクチャは通常、複数の層からなるディープニューラルネットワークです。このネットワークは、トレーニングデータで発見されたパターンと接続に基づいて、入力テキストを分析し予測を行います。トレーニングフェーズ中にモデルの期待される出力と意図された出力の不一致を減少させるために、モデルのパラメータは調整されます。LLMは、トレーニング中にテキストデータを消費し、文脈に応じて次の単語または単語のシリーズを予測しようとします。 LLMsの使用方法 質問への回答:LLMsは質問に回答するのが得意であり、正確で簡潔な回答を提供するために、本や論文、ウェブサイトなどの大量のテキストを検索します。 コンテンツ生成 – LLMsは、コンテンツ生成に活用されることが証明されています。彼らは、文法的に正しい一貫した記事、ブログエントリ、および他の文章を生成する能力を持っています。 テキスト要約:LLMsはテキスト要約に優れており、長いテキストを短く、より理解しやすい要約にまとめることができます。 チャットボット – LLMsは、チャットボットや対話型AIを使用したシステムの開発に頻繁に使用されます。これらのシステムは、質問を理解し適切に応答し、対話全体で文脈を保持することで、ユーザーと自然な言語で対話することができます。 言語翻訳 – LLMsは、言語の壁を乗り越えて成功したコミュニケーションを可能にするため、テキストの正確な翻訳が可能です。 LLMのトレーニングの手順 LLMのトレーニングの最初の段階は、モデルが言語のパターンや構造を発見するために使用する大規模なテキストデータセットを編集することです。 データセットが収集されたら、トレーニングのためにそれを準備するために前処理が必要です。これには、不要なエントリを削除することによるデータのクリーニングが含まれます。 LLMをトレーニングするために適切なモデルアーキテクチャを選択することは重要です。トランスフォーマベースのアーキテクチャは、GPTモデルを含む自然言語の処理と生成に非常に効率的であることが示されています。 モデルのパラメータを調整してLLMをトレーニングし、バックプロパゲーションなどのディープラーニング手法を使用してその精度を向上させます。モデルはトレーニング中に入力データを処理し、認識されたパターンに基づいて予測を行います。 初期のトレーニング後、LLMは特定のタスクやドメインでさらに微調整され、それらの領域でのパフォーマンスが向上します。 トレーニングされたLLMのパフォーマンスを評価し、モデルのパフォーマンスを評価するためのパープレキシティや精度などの複数のメトリクスを使用して、その効果を決定することが重要です。 トレーニングと評価が完了したLLMは、実際のアプリケーションのためのプロダクション環境で使用されます。…
新しい言語モデルを評価するための3つの重要な方法
毎週新しいLLMがリリースされますが、私のように考えると、これはついに私がLLMを利用したいすべてのユースケースに適合するのでしょうか?このチュートリアルでは、私は...を共有します
メタが彼らの有望なプロジェクトをすべてオープンソース化 | その理由を知る
はじめに Facebookとして以前は知られていたMetaは、オープンソースソフトウェア開発のリーダーとなりました。この動きは、プロプライエタリな技術に依存している企業にとっては直感に反するかもしれませんが、Metaがすべてのプロジェクトを一般公開する理由はいくつかあります。 また読む:Metaはマルチセンサリーモデルをオープンソース化 この記事では、Metaがなぜオープンソースソフトウェアを強く推奨しているのか、そしてそれが企業にどのように利益をもたらすのかについて探っていきます。 Metaによるオープンソースリリースの規模 過去数年間、AIの分野では有望なオープンソースソフトウェアの数が大幅に増加しています。Metaはこの革命の最前線に立ち、200以上のプロジェクトをオープンソース化しています。しかし、特に効率的に商業化できるプロジェクトを一般に公開することで、会社は何を得るのでしょうか。 Metaの倫理的義務 Mark Zuckerbergを含む同社の主要な人物によると、Metaはオープンソースの結果です。当初、同社のプラットフォームはLinux、Apache、Mysql、PHPの組み合わせであるLAMPから構築されました。そのため、Metaは設立以来、自社のプロジェクトをオープンソース化することに「利他的でイデオロギー的な義務」を感じています。つまり、Metaは共同体に還元する道徳的な義務を感じています。 Facebookはオープンソースコミュニティから多くの教訓を得ており、さらに学ぶことを楽しみにしています。オープンソース化の背後にある3つの最も重要な考えは次のとおりです。 実用的なものを共有する。 ヒーローを強調する。 一般的な問題を修正する。 より良いソフトウェアとコード Meta自身によれば、有望なモデルをオープンソースで公開することは、彼らがより良いソフトウェアを構築し、より良いコードを書くことを意味します。彼らのエンジニアは自分たちの仕事をオープンソース化できると知っているため、より誇りを持って働くことができます。最終的には、エンジニアがMetaが取り組んでいることを自分自身で見ることができるため、トップの人材を引き付けることが容易になります。したがって、これには堅実なビジネスセンスがあります。 また読む:データエンジニアリングの概要 失うよりも得るものが多い 自社のプロジェクトをオープンソースとして公開する決定は、Metaにとって不利よりも有利な可能性があります。競合他社がFacebookのコードを使用しても、会社には大きな害はありません。したがって、Metaはプロジェクトをオープンソースとして公開することで得るものが失うものよりも多いのです。 コミュニティからの無料貢献 Metaは、モデルやコードへのオープンアクセスを提供することで、コミュニティの無料の貢献を活用することができます。この動きは、オープンソースの開発者の間で好意的な評判を得ることにもつながり、彼らがMetaに就職したりセキュリティ上の脆弱性を責任を持って通知したりする可能性が高くなるでしょう。 より優れた採用 コードが公開されると、より多くの開発者がそれに触れることができるため、Metaは求人募集に適格な候補者を見つけやすくなります。この広範な露出はまた、Metaの技術の標準化をインターネット全体でもたらし、会社にとって2つの利点があります:ユーザーベースの拡大とより良いブラウザのサポート。 また読む:AIは人間を置き換えるか? Gen…
CMUの研究者がFROMAGeを紹介:凍結された大規模言語モデル(LLM)を効率的に起動し、画像と交錯した自由形式のテキストを生成するAIモデル
巨大な言語モデル(LLM)は、大規模なテキストコーパスでスケールに基づいて訓練されているため、人間のような話し言葉を生成したり、複雑な問いに応答したりするなど魅力的なスキルを発揮することができます。これらのモデルは非常に素晴らしいものですが、ほとんどの先端的なLLMはインターネットからダウンロードしたテキストデータのみで訓練されています。そのため、豊富な視覚的手がかりに触れる必要があるため、実世界に基づく概念を吸収することができません。その結果、現在使用されているほとんどの言語モデルは、視覚的な推論や基盤を必要とするタスクに制約があり、また視覚的な要素を生成することができません。本記事では、凍結されたLLMの能力をマルチモーダル(画像とテキスト)の入力と出力に効果的に使用する方法を示しています。 彼らは、言語モデルを訓練して、画像の代わりになる[RET]トークンを学習させ、コントラスティブラーニングを使用して[RET]の埋め込みを、それに関連する画像の視覚的な埋め込みに近づける線形マッピングも行っています。訓練中には、線形層と[RET]トークンの埋め込みの重みのみが更新され、モデルの大部分は凍結されたままです。そのため、彼らの提案手法はメモリと計算効率が非常に高いです。訓練が完了すると、モデルはいくつかのスキルを示します。元のテキストのみのLLMがテキストを生成する能力に加えて、新たなマルチモーダルの会話と推論のスキルを持っています。彼らの提案手法はモデルに依存せず、より強力なまたは大きなLLMの将来のリリースの基盤として使用することができます。 言語モデルは、画像を表す新しい[RET]トークンを学習し、コントラスティブラーニングを使用して、キャプションの[RET]の埋め込みを対応する画像の視覚的な埋め込みに近づける線形マッピングを行います。訓練中には、線形層と[RET]トークンの埋め込みの重みのみが更新され、モデルの大部分は固定されたままです。その結果、彼らの提案手法はメモリと計算効率が非常に高いです。訓練が完了すると、彼らのモデルはいくつかのスキルを示します。元のテキストのみのLLMがテキストを生成する能力に加えて、新たなマルチモーダルの会話と推論のスキルを持っています。彼らの提案手法はモデルに依存せず、より強力なまたは大きなLLMの将来のリリースの基盤として使用することができます。 オートリグレッシブLLMによるテキストから画像への検索の感度の向上を示しています。彼らの主な貢献の一つは、凍結された検索を使用したマルチモーダルデータに対するオートリグレッシブジェネレーション(FROMAGe)モデルであり、画像キャプションとコントラスティブラーニングを通じてLLMを視覚的に固定することが効果的に訓練されています。以前のアルゴリズムはウェブスケールの画像テキストデータが必要でしたが、FROMAGeは画像キャプションのペアだけから強力なフューショットのマルチモーダル能力を開発しています。彼らの手法は、以前のモデルよりも長く複雑な自由形式のテキストに対してより正確です。視覚的な入力を必要とするタスクにおいて、事前に訓練されたテキストのみのLLMの現在のスキル、コンテキストでの学習、入力の感度、会話の作成などを活用する方法を示しています。 彼らは以下を示しています:(1) 画像とテキストが交互に並ぶシーケンスからの文脈に基づいた画像の検索、(2) ビジュアルな会話におけるゼロショットの優れたパフォーマンス、および(3) 画像の検索における強化された対話文脈の感度。彼らの結果は、マルチモーダルなシーケンスの学習と生成を可能にするモデルの可能性を示しています。また、視覚に基づくタスクでの事前に訓練されたテキストのみのLLMの能力も強調しています。より多くの研究開発を促進するために、彼らのコードと事前訓練モデルは近々一般に公開される予定です。 このアプローチを使用することで、言語モデルは視覚領域に基づいて固定され、任意の画像テキスト入力を処理し、一貫した画像テキスト出力を生成することができます。緑の吹き出しはモデルによって作成され、グレーの吹き出しは入力プロンプトを表します。
Google AIは、MediaPipe Diffusionプラグインを導入しましたこれにより、デバイス上で制御可能なテキストから画像生成が可能になります
最近、拡散モデルはテキストから画像を生成する際に非常に成功を収め、画像の品質、推論のパフォーマンス、および創造的な可能性の範囲の大幅な向上をもたらしています。しかし、効果的な生成管理は、特に言葉で定義しにくい条件下では依然として課題となっています。 Googleの研究者によって開発されたMediaPipe拡散プラグインにより、ユーザーの制御下でデバイス内でのテキストから画像の生成が可能になります。本研究では、デバイスそのもの上で大規模な生成モデルのGPU推論に関する以前の研究を拡張し、既存の拡散モデルおよびそのLow-Rank Adaptation(LoRA)のバリエーションに統合できるプログラマブルなテキストから画像の生成の低コストなソリューションを提供します。 拡散モデルでは、イテレーションごとに画像の生成が行われます。拡散モデルの各イテレーションは、ノイズが混入した画像から目標の画像までを生成することで始まります。テキストのプロンプトを通じた言語理解は、画像生成プロセスを大幅に向上させています。テキストの埋め込みは、テキストから画像の生成のためのモデルにリンクされ、クロスアテンション層を介して結びつけられます。ただし、物体の位置や姿勢などの詳細は、テキストのプロンプトを使用して伝えるのがより困難な例です。研究者は、条件画像からの制御情報を拡散に追加することで、拡散を利用して制御を導入します。 Plug-and-Play、ControlNet、およびT2Iアダプターの方法は、制御されたテキストから画像を生成するためによく使用されます。Plug-and-Playは、入力画像から状態をエンコードするために、拡散モデル(Stable Diffusion 1.5用の860Mパラメータ)のコピーと、広く使用されているノイズ除去拡散暗黙モデル(DDIM)逆推定手法を使用します。これにより、入力画像から初期ノイズ入力を導出します。コピーされた拡散からは、自己注意の空間特徴が抽出され、Plug-and-Playを使用してテキストから画像への拡散に注入されます。ControlNetは、拡散モデルのエンコーダーの訓練可能な複製を構築し、ゼロで初期化されたパラメータを持つ畳み込み層を介して接続し、条件情報をエンコードし、それをデコーダーレイヤーに渡します。残念ながら、これによりサイズが大幅に増加し、Stable Diffusion 1.5では約450Mパラメータとなり、拡散モデル自体の半分となります。T2I Adapterは、より小さなネットワーク(77Mパラメータ)であるにもかかわらず、制御された生成で同等の結果を提供します。条件画像のみがT2I Adapterに入力され、その結果がすべての後続の拡散サイクルで使用されます。ただし、このスタイルのアダプターはモバイルデバイス向けではありません。 MediaPipe拡散プラグインは、効果的かつ柔軟性があり、拡張性のある条件付き生成を実現するために開発されたスタンドアロンネットワークです。 訓練済みのベースラインモデルに簡単に接続できる、プラグインのようなものです。 オリジナルモデルからの重みを使用しないゼロベースのトレーニングです。 モバイルデバイス上でほとんど追加費用なしにベースモデルとは独立して実行可能なため、ポータブルです。 プラグインはそのネットワーク自体であり、その結果はテキストから画像への変換モデルに統合されます。拡散モデル(青)に対応するダウンサンプリング層は、プラグインから取得した特徴を受け取ります。 テキストから画像の生成のためのモバイルデバイス上でのポータブルなオンデバイスパラダイムであるMediaPipe拡散プラグインは、無料でダウンロードできます。条件付きの画像を取り込み、多スケールの特徴抽出を使用して、拡散モデルのエンコーダーに適切なスケールで特徴を追加します。テキストから画像への拡散モデルと組み合わせると、プラグインモデルは画像生成に条件信号を追加します。プラグインネットワークは、相対的にシンプルなモデルであるため、パラメータはわずか6Mとなっています。モバイルデバイスでの高速推論を実現するために、MobileNetv2は深度方向の畳み込みと逆ボトルネックを使用しています。 基本的な特徴 自己サービス機械学習のための理解しやすい抽象化。低コードAPIまたはノーコードスタジオを使用してアプリケーションを修正、テスト、プロトタイプ化、リリースするために使用します。 Googleの機械学習(ML)ノウハウを使用して開発された、一般的な問題に対する革新的なMLアプローチ。 ハードウェアアクセラレーションを含む完全な最適化でありながら、バッテリー駆動のスマートフォン上でスムーズに実行するために十分に小さく効率的です。
2023年の最高のAIテキスト生成ツール
ChatGPTのリリース以来、AIテキスト生成器は頻繁にニュースになっています。適切に訓練されたツールをプロンプトすると、AIテキスト生成器は作業をより良く、より速く支援することができます。現在、ChatGPTは最も有名なAIシステムかもしれませんが、その基盤となるGPT技術は注目を浴びています。最新のGPT-3とGPT-4は非常に強力であり、APIとしても利用できるため、他のプログラマーが自分のプログラムにAIテキスト生成を組み込むことができます。そのため、類似のAIテキスト生成器が数多く存在しています。 以下は現在チェックするべきいくつかのAIテキスト生成器です: Jasper AIを使用したテキスト生成に関して、Jasperは有名です。ブランドのトーンに合わせてカスタマイズ可能な長さの高品質なコンテンツを簡単に作成することができます。Jasperはこのリストで最も高価なプログラムの一つなので、コミットする前にデモを活用しましょう。ZapierはJasperとの統合をサポートしているため、AIのテキスト生成を他のすべてのワークアプリケーションにリンクして自動化することができます。 Copy.ai Copy.aiは、ビジネス向けに説得力のあるコンテンツを作成するのを支援するAI駆動のコピーライティングツールです。参加には会員費や最低購入額は必要ありません。このツールでは、よりパーソナライズされた体験と広告を提供するためにCookieが使用されます。Cookieは、このサイトでのGDPRの遵守およびボットの識別に使用されます。アプリは、ユーザーのサイト上のクリックやタップを記録し、統計情報やヒートマップを作成するために使用します。Cookieはまた、ユーザーの好みの言語とサーバークラスターを記憶します。これにより、ユーザーの体験と表示される広告にメリットがあります。 Anyword Anywordは、マーケティングで使用するための人工知能(AI)ベースのテキスト生成器およびコピーライティングツールです。AnywordはAIシステムを使用して、ユーザーの入力を分析し、再現的なテーマを認識し、ユーザーのニーズに合わせたオリジナルでカスタマイズされたコンテンツを作成します。スペルチェック、文法修正、最適な文構造などの追加機能もあります。 Sudowrite Sudowriteは、小説や映画の執筆に向けた高度なAIライティングツールで、作家やジャーナリストなどの著名人から称賛を受けており、The New Yorker、The New York Times、The Vergeなどの一流のジャーナルにも掲載されています。Sudowriteの多くの機能のうち、「Show, Not Tell」ボタンと「Brainstorming Buddy」は、ユーザーが執筆スキルを磨くのをサポートするために設計されています。人工知能ツールに関する事前の知識や経験は必要ありません。Human++株式会社がソフトウェアをサポートし、定期的なサブスクリプション料金を請求する前に無料トライアル期間を提供しています。 Rytr Rytrは、高品質なコンテンツを迅速かつ手頃な価格で作成するのを支援するAIライティングアシスタントです。このツールは、最新の言語AIを使用して、40以上のユースケースと30以上の言語で100%ユニークなコンテンツを生成することができます。Rytrの充実した機能には、リッチテキストエディタ、言い換えや短縮ツール、盗作チェック、フォーマットオプションなどがあります。さらに、Rytrにはブラウザ拡張機能もあり、メール、ドキュメント、ソーシャルメディア、請求書、プロジェクトと統合することができます。 Notion AI パワフルなAI駆動のアプリケーションNotion…
2023年のマーケティングにおけるChatGPTの10のユースケース
2022年11月のリリース以来、ChatGPTはAIモデルの対話や利用方法を完全に変えました。その使用例は、バイオテクノロジーや薬物開発からマーケティングまで幅広くあります。ChatGPTは創設以来、ほぼすべての分野に影響を与えてきました。この記事では、2023年のマーケティングでのChatGPTのいくつかの使用例について説明します。 コンテンツ作成 ChatGPTの最大の強みは、テキスト生成です。ユーザープロンプトに続いて、興味を引く思考を巡らせる記事を書くことができるため、コンテンツ作成に適しています。メール、ソーシャルメディアの投稿、ブログ記事、広告コピーなどを書くことができます。モデルのコンテンツは、メールキャンペーン用の説得力のあるメールやデジタルマーケティングキャンペーン用のコンテンツなど、異なるマーケティングチャネルに組み込むことができます。これにより、ChatGPTはコピーライティングに理想的なツールとなります。 ただし、モデルには、興味を引く、説得力のあるなどのキーワードを含む詳細なプロンプトを与えることが重要です。 サーチエンジン最適化(SEO) ChatGPTは、マーケティングにおけるサーチエンジン最適化(SEO)において優れたツールです。適切なキーワードやフレーズの提案により、ユーザーの記事が検索エンジンの検索結果ページで上位にランク付けされることが保証されます。また、トピックのアイデアを生成したり、コンテンツの構造を作成したり、魅力的なタイトルを見つけることもできます。 リードジェネレーション 言語能力を活用したGPTを搭載したチャットボットは、サイトの訪問者とのテキストベースの会話を通じて、彼らが抱える問題を解決するだけでなく、リードジェネレーションのための情報を収集することができます。チャットボットは、製品やサービスに関する情報を訪問者に提供し、リードジェネレーションのための連絡先情報や好みの情報を収集することができます。さらに、顧客のウェブサイトとのやり取りを分析することで、モデルはマーケティングキャンペーンの効果を向上させるためにパーソナライズされたメールを生成することができます。 顧客サービスの品質向上 ChatGPTをチャットボットシステムに統合することで、顧客サポートを革新し、即時かつパーソナライズされたサポートを提供します。これらのAIパワードチャットボットは、顧客満足度を向上させ、応答時間を短縮し、顧客サービス担当者の業務負荷を軽減します。ChatGPTのインテリジェントな応答により、長い待ち時間、不適切な行動、信頼性の低いコミュニケーションチャネルなどの問題に対処します。顧客サービスの品質を向上させることで、マーケターは顧客の痛点を把握し、より良い対応ができるようになります。 オーディエンスリサーチ 検索クエリ、ソーシャルメディアの対話、過去の購入データなどのデータを使用して、ChatGPTは顧客の行動パターンやトレンドを特定し、ターゲットオーディエンスの興味、好み、痛みのポイントを把握することができます。この分析により、ユーザーはマーケティングコンテンツや製品開発に関する情報を元にした意思決定を行うことができます。 製品説明の作成 製品説明は、製品の特徴、利点、価値についての貴重な詳細を潜在的な顧客に伝えることで、マーケティングにおいて重要な役割を果たしています。ChatGPTの支援を受けて、ユーザーは特定のターゲットオーディエンスに効果的に共感する魅力的で情報量のある製品説明を生成することができます。 ソーシャルメディアの管理 ChatGPTは、スケジュール管理、効率化、最適化などのタスクを処理することができます。ChatGPTを活用することで、観客の行動、好み、ピーク利用時間に基づいてソーシャルメディア投稿のスケジュールを最適化することができます。さらに、前述のように、ChatGPTは顧客の行動に関する洞察を提供することもできます。さらに、企業のキャンペーンに最適な広告フォーマットを推奨することも可能です。 顧客アンケートの生成 ChatGPTは、顧客アンケートの作成において優れたツールとなることがあります。ChatGPTの機能を活用することで、関連する質問を生成し、効果的にアンケートを構築し、翻訳機能を通じて多言語化することも可能です。さらに、ChatGPTはアンケートデータの分析を支援し、マーケターが製品、サービス、マーケティング戦略を改善するための貴重なフィードバックと洞察を収集するのに役立ちます。 ターゲットの顧客像の生成 ビジネスにおいては、対象とする観客を知ることが重要です。ChatGPTは、ユーザーが自分のマーケティング活動を彼らの周りに構築するために役立つ情報を提供することができます。ユーザーはChatGPTに対して、ターゲットの顧客像を生成するように依頼することができます。 SWOT分析 ChatGPTは、マーケターが包括的なSWOT分析を実施することを可能にし、ブランドの強みと弱点、機会、潜在的な脅威をより深く理解することができます。
ChatGPTはデータサイエンティストを置き換えるのか?
すべての職業は危険にさらされていますあなたのキャリアをAIに対応させる方法をご紹介します
7月にGeForce NOWに参加する14のゲームの中で、『Remnant II』がヘッドラインを飾ります
7月はGeForce NOWライブラリに14の新しい対応タイトルが追加され、その中にはGunfire GamesとGearbox PublishingからのRemnant IIも含まれています。 新しい冒険が必要ですか?今週のクラウドからストリーミングされる9つの追加をチェックしてください。 さらに、Steam Summer Saleも今週開始され、GeForce NOWライブラリの多くの対応タイトルが安価で利用できます。GeForce NOWアプリ内でプロモーションのアップデートをお見逃しなく。 7月の新しいタイトル ジャギッド・アライアンス3では、傭兵を雇い、興味深いキャラクターに出会い、戦術的に深いターンベースの戦闘を行います。今月リリース予定です。 GeForce NOWライブラリは常に拡大しています。7月には、Remnant II、ジャギッド・アライアンス3、Xenonauts 2など、クラウドからストリーミングされる14の新しいタイトルが追加されます。 GeForce NOWアルティメットメンバーシップにアップグレードして、RTX 4080の品質で1,600以上のタイトルをプレイし、4K 120フレーム/秒のゲームプレイと超広角解像度をサポートしましょう。プライオリティおよびアルティメットメンバーは、RTX ONを使用してサポートされるタイトルをリアルタイムでシネマティックなライティングでプレイすることもできます。 以下は完全なリストです: The…
DatabricksでカスタムDockerコンテナ内でPython Wheelタスクを実行する
データエンジニアは、ビジネスの問題を解決するために、データを下流で使用できるように、ETLワークロードを実行するためのパイプラインを設計および構築しますDatabricksでは、このようなパイプラインを作成するために通常、...から始めます
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.