Learn more about Search Results リリース - Page 92

iPhone、iPad、およびMacでのCore MLによる高速で安定した拡散

先週、WWDC’23(Apple Worldwide Developers Conference)が開催されました。キーノート中のVision Proの発表に焦点が当てられましたが、それだけではありません。毎年のように、WWDC週はAppleのオペレーティングシステムとフレームワークの新機能について深く掘り下げる200以上の技術セッションが詰まっています。今年は特に、圧縮と最適化のためのCore MLの変更に興奮しています。これらの変更により、Stable Diffusionなどのモデルの実行が高速化され、メモリ使用量も少なくなります!一例として、12月にiPhone 13で実行したテストと現在の6ビットパレット化を使用した速度の比較を考えてみましょう: 12月のiPhoneでのStable Diffusionと現在の6ビットパレット化 目次 新しいCore MLの最適化 量子化および最適化されたStable Diffusionモデルの使用 カスタムモデルの変換と最適化 6ビット未満の使用 結論 新しいCore MLの最適化 Core MLは、Appleのデバイス内で効率的に機械学習モデルを実行するための成熟したフレームワークであり、CPU、GPU、およびMLタスクに特化したニューラルエンジンなど、Appleデバイスのすべてのコンピューティングハードウェアを活用します。デバイス上での実行は、Stable Diffusionや大規模な言語モデルの人気によって引き起こされた非常に興味深い時期を迎えています。多くの人々がこれらのモデルをさまざまな理由でハードウェア上で実行したいと考えており、利便性やプライバシー、APIのコスト削減などがその理由です。自然に、多くの開発者がデバイス上でこれらのモデルを効率的に実行する方法を探求し、新しいアプリやユースケースを作成しています。この目標を達成するためのCore MLの改善は、コミュニティにとって大きなニュースです!…

低リソースASRのためのMMSアダプターモデルの微調整

新しい(06/2023):このブログ記事は、「多言語ASRでのXLS-Rの微調整」に強く触発され、それの改良版として見なされるものです。 Wav2Vec2は、自動音声認識(ASR)のための事前学習モデルであり、Alexei Baevski、Michael Auli、およびAlex Conneauによって2020年9月にリリースされました。Wav2Vec2の強力なパフォーマンスが、ASRの最も人気のある英語データセットであるLibriSpeechで示された直後、Facebook AIはWav2Vec2の2つのマルチリンガルバージョンであるXLSRとXLM-Rを発表しました。これらのモデルは128の言語で音声を認識することができます。XLSRはクロスリンガル音声表現を意味し、モデルが複数の言語で有用な音声表現を学習する能力を指します。 Meta AIの最新リリースであるMassive Multilingual Speech(MMS)(Vineel Pratap、Andros Tjandra、Bowen Shiなどによる)は、マルチリンガル音声表現を新たなレベルに引き上げています。1,100以上の話されている言語が識別、転写、生成され、さまざまな言語識別、音声認識、テキスト読み上げのチェックポイントがリリースされます。 このブログ記事では、MMSのアダプタートレーニングが、わずか10〜20分の微調整後でも驚くほど低い単語エラーレートを達成する方法を示します。 低リソース言語の場合、私たちは「多言語ASRでのXLS-Rの微調整」と同様にモデル全体を微調整するのではなく、MMSのアダプタートレーニングの使用を強くお勧めします。 私たちの実験では、MMSのアダプタートレーニングはメモリ効率がよく、より堅牢であり、低リソース言語に対してはより優れたパフォーマンスを発揮することがわかりました。ただし、VoAGIから高リソース言語への場合は、Adapterレイヤーの代わりにモデル全体のチェックポイントを微調整する方が依然として有利です。 世界の言語多様性の保存 https://www.ethnologue.com/によると、約3000の「生きている」言語のうち、40%、つまり約1200の言語が、話者が減少しているために危機に瀕しています。このトレンドはますますグローバル化する世界で続くでしょう。 MMSは、アリ語やカイビ語など、絶滅危惧種である多くの言語を転写することができます。将来的には、MMSは、残された話者が母国語での記録作成やコミュニケーションをサポートすることで、言語を生き続けるために重要な役割を果たすことができます。 1000以上の異なる語彙に適応するために、MMSはアダプターを使用します。アダプターレイヤーは言語間の知識を活用し、モデルが別の言語を解読する際に役立つ役割を果たします。 MMSの微調整 MMSの非監視チェックポイントは、1400以上の言語で300万〜10億のパラメータを持つ、50万時間以上のオーディオで事前学習されました。 事前学習のためのモデルサイズ(300Mおよび1B)の事前学習のみのチェックポイントは、🤗 Hubで見つけることができます:…

Open LLMのリーダーボードはどうなっていますか?

最近、Falcon 🦅のリリースおよびOpen LLM Leaderboardへの追加に関して、Twitter上で興味深い議論が起こりました。Open LLM Leaderboardは、オープンアクセスの大規模言語モデルを比較する公開のリーダーボードです。 この議論は、リーダーボードに表示されている4つの評価のうちの1つであるMassive Multitask Language Understanding(略称:MMLU)のベンチマークを中心に展開されました。 コミュニティは、リーダーボードの現在のトップモデルであるLLaMAモデル 🦙のMMLU評価値が、公開されたLLaMa論文の値よりも著しく低いことに驚きました。 そのため、私たちは何が起こっているのか、そしてそれを修正する方法を理解するために深堀りしました 🕳🐇 私たちとのこの冒険の旅において、私たちはLLaMAの評価に協力した素晴らしい@javier-m氏、そしてFalconチームの素晴らしい@slippylolo氏と話し合いました。もちろん、以下のエラーは彼らではなく、私たちに帰すべきです! この冒険の旅の中で、オンラインや論文で見る数値を信じるべきかどうか、モデルを単一の評価で評価する方法について多くのことを学ぶことができます。 準備はいいですか?それでは、シートベルトを締めましょう、出発します 🚀。 Open LLM Leaderboardとは何ですか? まず、Open LLM Leaderboardは、実際にはEleutherAI非営利AI研究所によって作成されたオープンソースのベンチマークライブラリEleuther…

ビジョン言語モデルの高速化:Habana Gaudi2上のBridgeTower

Optimum Habana v1.6 on Habana Gaudi2 では、最新のビジョン言語モデルである BridgeTower のファインチューニングにおいて、A100 と比較してほぼ3倍の高速化を実現しています。ハードウェアアクセラレーションによるデータの読み込みと高速な DDP 実装の2つの新機能がパフォーマンス向上に寄与しています。 これらの技術は、データの読み込みに制約がある他のワークロードにも適用できます。これは、さまざまなタイプのビジョンモデルに頻繁に起こるケースです。この投稿では、BridgeTower のファインチューニングを Habana Gaudi2 と Nvidia A100 80GB で比較するために使用したプロセスとベンチマークを紹介します。また、トランスフォーマーベースのモデルでこれらの機能を簡単に活用する方法も示します。 BridgeTower 最近のビジョン言語(VL)モデルは、さまざまなVLタスクで非常に重要であり、優位性を示しています。最も一般的なアプローチは、それぞれのモダリティから表現を抽出するためにユニモーダルエンコーダを利用することです。その後、これらの表現は融合されるか、クロスモーダルエンコーダに供給されます。VL表現学習のパフォーマンス制約と制限を効果的に扱うために、BridgeTower は複数のブリッジ層を導入し、ユニモーダルエンコーダのトップ層とクロスモーダルエンコーダの各層との間に接続を構築します。これにより、クロスモーダルエンコーダ内の異なる意味レベルで視覚とテキストの表現の効果的なボトムアップのクロスモーダルの整合性と融合が可能になります。…

SQLクエリにおいてGPT-4よりも優れたもの:NSQL(完全なオープンソース)

ChatGPTや他のLLM(Language Model)を使用してSQLクエリを生成しようとしたことがある方は手を挙げてください私は試してみましたし、現在も試しています!しかし、新しいオープンソースのファミリーが登場したことをお伝えできるのがとても嬉しいです...

ジョシュ・フィースト、CogitoのCEO兼共同創業者 – インタビューシリーズ

ジョシュ・フィーストは、CogitoのCEO兼共同創業者であり、感情と会話AIを組み合わせた革新的なプラットフォームを提供するエンタープライズですこのプラットフォームは、リアルタイムのコーチングやガイダンスをコンタクトセンターエージェントに提供し、スーパーバイザーにはどこからでもチームのライブ会話を見ることができるだけでなく、顧客と従業員のエクスペリエンスを継続的にモニタリングしますCogitoの物語はここから始まります...

MPT-30B:モザイクMLは新しいLLMを使用して、NLPの限界を em>GPT-3を凌駕します

MosaicMLのLLMにおける画期的な進歩について、MPTシリーズで学びましょうMPT-30Bおよびその微調整された派生モデル、MPT-30B-InstructとMPT-30B-Chatが他のモデルを凌駕する方法を探索してください

リアルワールドのMLOpsの例:Brainlyでのビジュアル検索のためのエンドツーエンドのMLOpsパイプライン

シリーズ「実世界のMLOpsの例」の第2回目では、Brainlyの機械学習エンジニアであるPaweł Pęczekが、Brainlyのビジュアル検索チームにおけるエンドツーエンドの機械学習オペレーション(MLOps)プロセスを詳しく説明しますそして、MLOpsで成功するためには、技術やプロセスだけではなく、さらに詳細な情報を共有します Enjoy...

実験追跡ツールの構築方法[Neptuneのエンジニアの学びから]

あなたのチームのMLOpsエンジニアとして、よくMLプラットフォームに機能を追加したり、データサイエンティストが利用するためのスタンドアロンツールを構築することで、彼らのワークフローを改善するように依頼されることがあります実験トラッキングはそのような機能の一つですそして、この記事を読んでいるのであれば、あなたがサポートしているデータサイエンティストはおそらく...

GPT-3がMLOpsの将来に与える意味とは?デビッド・ハーシーと共に

この記事は元々MLOps Liveのエピソードであり、ML実践者が他のML実践者からの質問に答えるインタラクティブなQ&Aセッションです各エピソードは特定のMLトピックに焦点を当てており、このエピソードではGPT-3とMLOpsの特徴についてDavid Hersheyと話しましたYouTubeで視聴することができます Or...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us