Learn more about Search Results リポジトリ - Page 91
- You may be interested
- 「AIが主要な組織の収益サイクル管理を最...
- フロントエンド開発のトレンド
- ラミニAIに会ってください:開発者が簡単...
- ハギングフェイスの読書会、2021年2月 ...
- 「2023年に行うべきトップ10のウェブスク...
- 欧州とイスラエルのAIファーストスタート...
- 画像認識におけるディープラーニング:技...
- 「大規模言語モデルのダークサイドの理解...
- エコジェンに会ってください:生物学者や...
- 効果的なコーディングルーティンを開発す...
- アナリストとしてのミスを犯すこと-そして...
- 「Azureのコストを最適化するための10の方...
- 蒸留-ささやき:AI音声からテキストへの技...
- 「AIが家庭用ロボットの計画時間を半分に...
- インデータベース分析:SQLの解析関数の活用
Amazon SageMaker 上で MPT-7B を微調整する
毎週新しい大規模言語モデル(LLM)が発表され、それぞれが前任者を打ち負かして評価のトップを狙っています最新のモデルの1つはMPT-7Bです
チャートの推論に基づくモデルの基盤
グーグルリサーチのリサーチソフトウェアエンジニア、ジュリアン・アイゼンシュロスによる投稿 ビジュアル言語は、情報を伝えるためにテキスト以外の絵文字を使用するコミュニケーション形式です。アイコノグラフィ、情報グラフィック、表、プロット、チャートなどの形でデジタルライフで普及しており、道路標識、コミックブック、食品ラベルなどの現実世界にも広がっています。このようなメディアをコンピュータがより理解できるようにすることは、科学的コミュニケーションと発見、アクセシビリティ、データの透過性に役立ちます。 ImageNetの登場以来、学習ベースのソリューションを使用してコンピュータビジョンモデルは大きな進歩を遂げてきましたが、焦点は自然画像にあり、分類、ビジュアルクエスチョンアンサリング(VQA)、キャプション、検出、セグメンテーションなどのさまざまなタスクが定義され、研究され、いくつかの場合には人間の性能に達成されています。しかし、ビジュアル言語は同じレベルの注目を集めていません。これは、この分野における大規模なトレーニングセットの不足のためかもしれません。しかし、PlotQA、InfographicsVQA、ChartQAなどの視覚言語イメージにおける質問応答システムの評価を目的とした新しい学術データセットが、ここ数年で作成されています。 ChartQAからの例。質問に答えるには、情報を読み取り、合計と差を計算する必要があります。 これらのタスクに対して構築された既存のモデルは、光学的文字認識(OCR)情報とその座標を大規模なパイプラインに統合することに頼っていましたが、プロセスはエラーが発生しやすく、遅く、一般化が悪いです。既存の畳み込みニューラルネットワーク(CNN)またはトランスフォーマーに基づくエンドツーエンドのコンピュータビジョンモデルは、自然画像で事前にトレーニングされたモデルを簡単にビジュアル言語に適応させることができなかったため、これらの方法が広く使用されていました。しかし、既存のモデルは、棒グラフの相対高さや円グラフのスライスの角度を読み取り、軸のスケールを理解し、色、サイズ、テクスチャでピクトグラムを伝説値に正しくマッピングし、抽出された数字で数値演算を実行するなど、チャートの質問に対する課題には準備ができていません。 これらの課題に対応するために、「MatCha:数学推論とチャートディレンダリングを活用したビジュアル言語の事前トレーニングの強化」という提案を行います。 MatChaは数学とチャートを表す言葉であり、2つの補完的なタスクでトレーニングされたピクセルからテキストへの基礎モデル(複数のアプリケーションでファインチューニングできる組み込み帰納バイアスを備えた事前トレーニングモデル)です。1つはチャートディレンダリングであり、プロットまたはチャートが与えられた場合、画像からテキストモデルはその基礎となるデータテーブルまたはレンダリングに使用されるコードを生成する必要があります。数学推論の事前トレーニングでは、テキストベースの数値推論データセットを選択し、入力を画像にレンダリングし、画像からテキストモデルが回答をデコードする必要があります。また、「DePlot:プロットからテーブルへの翻訳によるワンショットビジュアル言語推論」という、テーブルへの翻訳を介したチャートのワンショット推論にMatChaの上に構築されたモデルを提案します。これらの方法により、ChartQAの以前の最高記録を20%以上超え、パラメータが1000倍多い最高の要約システムに達成します。両方の論文はACL2023で発表されます。 チャートディレンダリング プロットやチャートは、基礎となるデータテーブルとコードによって通常生成されます。コードは、図の全体的なレイアウト(タイプ、方向、色/形状スキームなど)を定義し、基礎となるデータテーブルは実際の数字とそのグループ化を確立します。データとコードの両方がコンパイラ/レンダリングエンジンに送信され、最終的な画像が作成されます。チャートを理解するには、イメージ内の視覚パターンを発見し、効果的に解析してグループ化し、主要な情報を抽出する必要があります。プロットレンダリングプロセスを逆転するには、すべてのこのような機能が必要であり、したがって理想的な事前トレーニングタスクとして機能することができます。 ランダムなプロットオプションを使用して、Airbus A380 Wikipediaページの表から作成されたチャートです。MatChaの事前トレーニングタスクは、イメージからソーステーブルまたはソースコードを回復することです。 チャート、その基礎となるデータテーブル、およびそのレンダリングコードを同時に取得することは、実践的には困難です。事前トレーニングデータを十分に収集するために、[chart、code]および[chart、table]のペアを独立して蓄積します。[chart、code]の場合、適切なライセンスを持つすべてのGitHub IPythonノートブックをクロールし、図を含むブロックを抽出します。図とそれに直前にあるコードブロックは、[chart、code]ペアとして保存されます。[chart、table]のペアについては、2つのソースを調査しました。最初のソースは、合成データで、TaPasコードベースからWebクロールされたWikipediaテーブルを手動でコードに変換します。列のタイプに応じて、いくつかのプロットオプションをサンプリングして組み合わせます。さらに、事前トレーニングコーパスを多様化するために、PlotQAで生成された[chart、table]ペアも追加します。2番目のソースはWebクロールされた[chart、table]ペアです。Statista、Pew、Our World in Data、OECDの4つのWebサイトから合計約20,000ペアを含むChartQAトレーニングセットでクロールされた[chart、table]ペアを直接使用します。 数学的推論 MatChaに数値推論知識を組み込むために、テキスト数学データセットから数学的推論スキルを学習します。事前トレーニングには、MATHとDROPの2つの既存のテキスト数学推論データセットを使用します。MATHは合成的に作成され、各モジュール(タイプ)の質問ごとに200万のトレーニング例を含んでいます。DROPは読解型のQAデータセットで、入力はパラグラフのコンテキストと質問です。 DROPでの質問を解決するには、モデルがパラグラフを読み、関連する数字を抽出し、数値計算を実行する必要があります。私たちは、両方のデータセットが補完的であることを発見しました。MATHには、異なるカテゴリーにわたる多数の質問が含まれており、モデルに明示的に注入する必要がある数学的操作を特定するのに役立ちます。DROPの読解形式は、モデルが情報抽出と推論を同時に実行する典型的なQA形式に似ています。実際には、両方のデータセットの入力を画像にレンダリングします。モデルは答えをデコードするように訓練されます。 MATHとDROPからの例をMatChaの事前トレーニング目的に取り込むことにより、MatChaの数学的推論スキルを向上させます。入力テキストを画像としてレンダリングします。 エンドツーエンドの結果 Webサイト理解に特化した画像からテキストへの変換トランスフォーマーであるPix2Structモデルバックボーンを使用し、上記の2つのタスクで事前トレーニングを行います。MatChaの強みを示すために、表の基礎にアクセスできない質問応答や要約のためのチャートやプロットを含むいくつかの視覚言語タスクで微調整します。MatChaは、以前のモデルの性能を大幅に上回り、基礎となるテーブルにアクセスできると仮定する以前の最先端も上回ります。 以下の図では、チャートと作業するための標準的なアプローチであったOCRパイプラインから情報を取り込んだ2つのベースラインモデルを最初に評価します。最初のものはT5に基づき、2番目のものはVisionTaPasに基づきます。また、PaLI-17BとPix2Structのモデル結果を報告します。PaLI-17Bは、多様なタスクでトレーニングされた大型(他のモデルの約1000倍)のイメージプラステキスト・トゥ・テキスト・トランスフォーマーですが、テキストやその他の視覚言語の読み取り能力に限界があります。最後に、Pix2StructとMatChaのモデル結果を報告します。…
ソフトウェア開発活動のための大規模シーケンスモデル
Google の研究科学者である Petros Maniatis と Daniel Tarlow が投稿しました。 ソフトウェアは一度に作られるわけではありません。編集、ユニットテストの実行、ビルドエラーの修正、コードレビューのアドレス、編集、リンターの合意、そしてより多くのエラーの修正など、少しずつ改善されていきます。ついには、コードリポジトリにマージするに十分な良い状態になります。ソフトウェアエンジニアリングは孤立したプロセスではなく、人間の開発者、コードレビュワー、バグ報告者、ソフトウェアアーキテクト、コンパイラ、ユニットテスト、リンター、静的解析ツールなどのツールの対話です。 今日、私たちは DIDACT(Dynamic Integrated Developer ACTivity)を説明します。これは、ソフトウェア開発の大規模な機械学習(ML)モデルをトレーニングするための方法論です。 DIDACT の新規性は、完成したコードの磨き上げられた最終状態だけでなく、ソフトウェア開発のプロセス自体をトレーニングデータのソースとして使用する点にあります。開発者が作業を行う際に見るコンテキストと、それに対するアクションを組み合わせて、モデルはソフトウェア開発のダイナミクスについて学び、開発者が時間を費やす方法により合わせることができます。私たちは、Google のソフトウェア開発の計装を活用して、開発者活動データの量と多様性を以前の作品を超えて拡大しました。結果は、プロのソフトウェア開発者にとっての有用性と、一般的なソフトウェア開発スキルを ML モデルに注入する可能性という2つの側面で非常に有望です。 DIDACT は、編集、デバッグ、修復、およびコードレビューを含む開発活動をトレーニングするマルチタスクモデルです。 私たちは DIDACT Comment…
メイカーに会おう:ソフトウェアエンジニアがNVIDIA Jetsonを活用して自律運転スケートパークを構築
Kirk Kaiser Kirk Kaiserは、自転車に乗り新聞を配達するというプレイヤーが、通りの中央に出現するランプなどの障害物に遭遇しながら新聞を配達するビデオゲーム「Paperboy」のファンで育ちました。 これが、ソフトウェア開発者の最新プロジェクトのインスピレーション元となり、NVIDIA Jetsonプラットフォームを利用したエッジAIやロボット技術を使用した自動運転スケートランプを作りました。 フロリダ州のナポリに拠点を置く熱心なスケートボーダーであるKaiserは、「私の人生にPaperboyの不条理さと楽しさが加わることを望んでいた」と語ります。「ある日、私は犬のBenjiが私の傍らを走っているのを見ながらボードに乗っていたときに、『私が一緒に持っていけるランプがあったらどうだろうか?』と思いました。」 彼は今、それを実現する技術を構築しています。携帯可能な自律型スケートパークにつながる可能性のある技術です。 これまでに、彼は電動プラットフォームを開発し、ランプを持ち上げて地面と水平にすることができるようにしました。PS4コントローラーを使用し、NVIDIA Jetson Nano Developer KitにBluetoothで接続して操縦できます。 今は、新しいNVIDIA Jetson Orin Nano Developer Kitの助けを借りて、プラットフォームが通りや障害物を認識し、AIモデルをトレーニングするためのデータを収集して、最終的に完全に自律的になることができるようにしています。 これは、彼がGitpodという、ソフトウェアメーカー向けのクラウド開発環境を提供するスタートアップの開発者関係の責任者として没頭していないときに取り組むプロジェクトです。 メーカーについて Kaiserは、若いうちからソフトウェアエンジニアリングを学び、テクノロジーに特化した名門高校に奨学金を受け入れました。そこで、彼はプログラミングスキルを磨き、若い大人になる前に、まったく異なる方法で世界を見て体験する時間を過ごしました。 18歳のとき、彼はバッグを詰め、コスタリカの野生生物保護区で1年間暮らし、パーマカルチャーファームで働き、食べ物を育てて飲料用の雨水を集めました。その後、バーモントに移り、禅仏教徒と一緒に農業を行い、アパラチアン・トレイルの1,000マイルのハイキングをし、4つの州を通り抜けました。 トレイルを去った後、Kirkは旅行ウェブサイトを立ち上げ、化粧品会社で最初のソフトウェアの仕事を得て、照明会社の研究開発部門で働き、家族を養うためにソフトウェアエンジニアリングの情熱を再燃させました。現在、4歳の息子を含む家族を養うために働いています。…
データサイエンティストのための10のJupyter Notebookのヒントとトリック
専門家のヒントやテクニックを使ってJupyter Notebookの全ポテンシャルを引き出し、時間を節約するショートカット、強力なマジック関数、高度な機能などを活用して生産性を向上させましょう
GPT4Allは、あなたのドキュメント用のローカルChatGPTであり、無料です!
あなたのラップトップにGPT4Allをインストールし、AIにあなた自身のドメイン知識(あなたのドキュメント)について尋ねる方法... そして、それはCPUのみで動作します!
ReactPyで始める方法
JavaScriptを使わずにWebアプリケーションを構築するための初心者向けガイド
OpenChatのご紹介:カスタムチャットボットを数分で構築するための無料でシンプルなプラットフォーム
PDF、ウェブサイト、Notion、Confluence、Office 365などのリソースに接続して、チャットボットに任意のトピックを教えることができます
畳み込みニューラルネットワークの包括的なガイド
人工知能は、人間と機械の能力の差を埋めるために、膨大な成長を見ています研究者や熱狂的な支持者たちは、素晴らしいことを実現するために、この分野の多くの側面に取り組んでいますその多くの領域の1つが、コンピュータビジョンの分野です
JPLは、マルウェア研究を支援するためのPDFアーカイブを作成しました
データサイエンティストたちは、オンラインセキュリティの向上を目的として、800万のPDFをオープンソースのアーカイブにまとめました
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.