Learn more about Search Results リリース - Page 90
- You may be interested
- AIとコンテンツの創造:デジタルイノベー...
- Meta AIとSamsungの研究者が、学習率適応...
- クラゲ、猫、ヘビ、宇宙飛行士は何を共有...
- 「レストランを選ぶためのベイズの方法」
- 「技術への依存が「驚くべき」教育格差を...
- 3Dプリントされたセラミックはガスタービ...
- 「タストリーがコンピューターに味覚を教...
- 武士と鬼の世界に入りましょう:GFN Thurs...
- 2023年のデータの求人市場を解読する:数...
- バイデン政権は、チップ研究の取り組みにG...
- コンピュータビジョンシステムは、画像認...
- Googleが「Gemini」というAIツールと、そ...
- 目に見える光通信のための簡単な手段
- 「Pyroを使ったベイジアンABテスト」
- NVIDIAとテルアビブ大学の研究者が、効率...
音声合成、音声認識、そしてSpeechT5を使ったその他の機能
私たちは喜んでお知らせします。SpeechT5は🤗Transformersで利用可能になりました。これは最先端の機械学習モデルの簡単に使用できる実装を提供するオープンソースライブラリです。 SpeechT5はもともと、Microsoft Research Asiaによって開発された論文「SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing」で説明されています。論文の著者が公開した公式のチェックポイントはHugging Face Hubで利用可能です。 すぐに試してみたい場合は、以下のデモがあります: 音声合成(TTS) 音声変換 自動音声認識 はじめに SpeechT5は、1つのアーキテクチャに3つの異なる種類の音声モデルを組み込んでいます。 以下のことができます: 音声からテキストへの変換(自動音声認識や話者識別に使用) テキストから音声への変換(音声を合成) 音声から音声への変換(異なる声や音声の強調を行う) SpeechT5の基本的なアイデアは、テキストから音声、音声からテキスト、テキストからテキスト、音声から音声までのデータの混合で単一のモデルを事前学習することです。これにより、モデルはテキストと音声の両方から同時に学習します。この事前学習アプローチの結果は、テキストと音声の両方に共有される統一された隠れ表現の空間を持つモデルです。…
パラメータ効率の高いファインチューニングを使用する 🤗 PEFT
動機 トランスフォーマーアーキテクチャに基づく大規模言語モデル(LLM)であるGPT、T5、BERTなどは、さまざまな自然言語処理(NLP)タスクで最先端の結果を達成しています。これらのモデルは、コンピュータビジョン(CV)(VIT、Stable Diffusion、LayoutLM)やオーディオ(Whisper、XLS-R)などの他の領域にも進出しています。従来のパラダイムは、一般的なWebスケールのデータでの大規模な事前学習に続いて、ダウンストリームのタスクに対する微調整です。ダウンストリームのデータセットでこれらの事前学習済みLLMを微調整することで、事前学習済みLLMをそのまま使用する場合(ゼロショット推論など)と比較して、大幅な性能向上が得られます。 しかし、モデルが大きくなるにつれて、完全な微調整は一般的なハードウェアで訓練することが不可能になります。また、各ダウンストリームタスクごとに微調整済みモデルを独立して保存および展開することは非常に高コストです。なぜなら、微調整済みモデルのサイズは元の事前学習済みモデルと同じサイズだからです。パラメータ効率の良い微調整(PEFT)アプローチは、これらの問題に対処するために開発されました! PEFTアプローチは、事前学習済みLLMのほとんどのパラメータを凍結しながら、わずかな(追加の)モデルパラメータのみを微調整するため、計算およびストレージコストを大幅に削減します。これにより、LLMの完全な微調整中に観察される「壊滅的な忘却」という問題も克服されます。PEFTアプローチは、低データレジメでの微調整よりも優れた性能を示し、ドメイン外のシナリオにもより適応します。これは、画像分類や安定拡散ドリームブースなどのさまざまなモダリティに適用することができます。 また、PEFTアプローチは移植性にも役立ちます。ユーザーはPEFTメソッドを使用してモデルを微調整し、完全な微調整の大きなチェックポイントと比較して数MBの小さなチェックポイントを取得することができます。たとえば、「bigscience/mt0-xxl」は40GBのストレージを使用し、完全な微調整では各ダウンストリームデータセットに40GBのチェックポイントが生成されますが、PEFTメソッドを使用すると、各ダウンストリームデータセットにはわずか数MBのチェックポイントでありながら、完全な微調整と同等の性能が得られます。PEFTアプローチからの小さなトレーニング済み重みは、事前学習済みLLMの上に追加されます。そのため、モデル全体を置き換えることなく、小さな重みを追加することで同じLLMを複数のタスクに使用することができます。 つまり、PEFTアプローチは、わずかなトレーニング可能なパラメータの数だけで完全な微調整と同等のパフォーマンスを実現できるようにします。 本日は、🤗 PEFTライブラリをご紹介いたします。このライブラリは、最新のパラメータ効率の良い微調整技術を🤗 Transformersと🤗 Accelerateにシームレスに統合しています。これにより、Transformersの最も人気のあるモデルを使用し、Accelerateのシンプルさとスケーラビリティを活用することができます。以下は現在サポートされているPEFTメソッドですが、今後も追加される予定です: LoRA:LORA:大規模言語モデルの低ランク適応 Prefix Tuning:P-Tuning v2:プロンプトチューニングは、スケールとタスクにわたって完全な微調整と同等の性能を発揮することができます Prompt Tuning:パラメータ効率の良いプロンプトチューニングの力 P-Tuning:GPTも理解しています ユースケース ここでは多くの興味深いユースケースを探求しています。以下はいくつかの興味深い例です: Google Colabで、Nvidia GeForce RTX…
Swift 🧨ディフューザー – Mac用の高速安定拡散
Diffusers for Macを使用して、最新の拡散モデルによってテキストを美しい画像に簡単に変換できます。このネイティブアプリは、Hugging Face Hubへのコミュニティの貢献によって提供された最先端のテキストから画像へのモデルを活用し、高速なパフォーマンスのためにCore MLに変換されています。最新バージョンの1.1は、Mac App Storeで利用可能であり、パフォーマンスの大幅なアップグレードと使いやすいインターフェースの調整が行われています。これは将来の機能アップデートのための堅牢な基盤となっています。さらに、このアプリは完全にオープンソースであり、許容されるライセンスであるため、あなた自身でも構築することができます!詳細については、https://github.com/huggingface/swift-coreml-diffusers でGitHubリポジトリをご覧ください。 Diffusers for Macとは具体的には何ですか? Diffusersアプリ(App Store、ソースコード)は、Mac版の 🧨 diffusers ライブラリの対応アプリです。このライブラリはPythonとPyTorchで書かれており、モジュラーな設計を使用して拡散モデルのトレーニングと実行を行います。多くの異なるモデルとタスクをサポートし、高度に構成可能で最適化されています。Macでも実行できます。Apple Siliconでは、PyTorchの mps アクセラレータを使用します。 では、なぜネイティブのMacアプリを実行したいのでしょうか?その理由はいくつかあります: オリジナルのPyTorchモデルではなく、Core MLモデルを使用します。これは、Appleハードウェアの特定の最適化に対応する追加の最適化を可能にし、Core MLモデルはシステム内のすべての計算デバイス(CPU、GPU、ニューラルエンジン)で実行できます。PyTorchの…
大規模な言語モデルによるレッドチーミング
警告: この記事はレッドチーミングについてであり、そのためモデル生成の例が不快または不快なものである可能性があります。 大量のテキストデータで訓練された大規模な言語モデル(LLM)は、現実的なテキストを生成するのに非常に優れています。しかし、これらのモデルは、個人情報(社会保障番号など)の公開や誤情報、偏見、憎悪、有害なコンテンツの生成など、望ましくない振る舞いをしばしば示します。たとえば、GPT3の以前のバージョンは、性差別的な振る舞い(以下参照)やムスリムに対する偏見を示すことが知られていました。 LLMを使用する際にこのような望ましくない結果を発見した場合、Generative Discriminator Guided Sequence Generation(GeDi)やPlug and Play Language Models(PPLM)などの戦略を開発してそれらからそれを逸らすことができます。以下は、同じプロンプトを使用してGPT3の生成を制御するためにGeDiを使用した例です。 最近のGPT3のバージョンでも、プロンプトインジェクションによる攻撃を受けると同様に不快なテキストが生成され、その結果、下流のアプリケーションのセキュリティ上の懸念となる可能性があります。このブログで説明されています。 レッドチーミングは、望ましくない振る舞いを引き起こす可能性のあるモデルの脆弱性を引き出す評価の形式です。ジェイルブレイキングは、LLMがそのガードレールから逸脱するように操作されるレッドチーミングの別の言葉です。MicrosoftのチャットボットTay(2016年)やより最近のBingのチャットボットシドニーは、レッドチーミングを使用して基礎となるMLモデルの徹底的な評価の欠如がどれほど壊滅的な結果をもたらすかの実際の例です。レッドチームのアイデアの起源は、軍隊によって実施された対抗者シミュレーションやウォーゲームに遡ることができます。 レッドチーミングの目標は、モデルが有害なテキストを生成する可能性が高いテキストを生成するようにするプロンプトを作成することです。レッドチーミングは、MLのより一般的に知られた評価形式である敵対的攻撃といくつかの類似点と相違点を共有しています。その類似点は、レッドチーミングと敵対的攻撃が実際のユースケースで望ましくないコンテンツを生成するためにモデルを「攻撃」または「だます」という共通の目標を持っていることです。ただし、敵対的攻撃は人間には理解しにくい場合があります。たとえば、各プロンプトに「aaabbbcc」という文字列を接頭辞として付けると、モデルのパフォーマンスが低下するためです。Wallace et al.、’19では、さまざまなNLP分類および生成タスクにおけるそのような攻撃の多くの例が議論されています。一方、レッドチーミングのプロンプトは通常、通常の自然言語のプロンプトと似ています。 レッドチーミングは、ユーザーの不快な体験を引き起こしたり、悪意を持つユーザーによる暴力やその他の違法な活動を支援する可能性があるモデルの制限を明らかにすることができます。レッドチーミングからの出力(敵対的攻撃と同様)は、一般にモデルを訓練して、有害な結果を引き起こす可能性を低くするか、またはそれから逸らすために使用されます。 レッドチーミングは、可能なモデルの障害物の創造的な考えを必要とするため、リソースを消費する問題です。回避策として、与えられたプロンプトにオフェンシブな生成を引き起こす可能性のあるトピックやフレーズを予測するために訓練された分類器をLLMに追加することができます。このような戦略は慎重な方向に進むでしょう。しかし、それは非常に制限的であり、モデルを頻繁に回避的にする原因となります。したがって、モデルが役立つこと(指示に従うこと)と無害であること(少なくとも有害な行動を引き起こしにくいこと)の間には緊張があります。 レッドチームは、ハードループ内の人間または有害な出力をテストするために別のLMをテストしているLMです。安全性とアライメントのためにファインチューニングされたモデルに対してレッドチーミングプロンプトを作成するには、Ganguli et al.、’22で説明されているような悪意のあるキャラクターとして振る舞うようにLLMに指示する役割プレイ攻撃の形で創造的な思考が必要です。モデルに自然言語の代わりにコードで応答するように指示することも、モデルの学習バイアスを明らかにすることができます。 さらなる例については、このツイートスレッドをご覧ください。 ChatGPT自体によるLLMのジェイルブレイキングのアイデアのリストは次のとおりです。…
Diffusersライブラリの開発に関する倫理ガイドライン
私たちは、一つひとつのコミットによって、私たちのライブラリをより責任あるものにする旅に出ています! Diffusersライブラリのドキュメンテーションの一部として、倫理的なフレームワークの公開をお知らせできることを誇りに思っています。 拡散モデルの現実のケースアプリケーションと社会への潜在的な負の影響を考慮すると、このイニシアチブは、Diffusersライブラリのメンテナによるコミュニティの貢献に関する技術的な意思決定を導くことを目的としています。私たちは、意思決定の方法について透明性を持ち、何よりも、それらの意思決定を導く価値観を明確にすることを目指しています。 私たちは、倫理を、ガイドとなる価値観、具体的な行動、そして継続的な適応というプロセスとして捉えています。そのため、私たちはガイドラインを時間と共に調整することにコミットし、Diffusersプロジェクトの進化と、それを生かし続けるコミュニティからの価値あるフィードバックに従います。 透明性:私たちは、PRの管理やユーザへの選択の説明、技術的な意思決定について透明性を持つことにコミットしています。 一貫性:私たちは、プロジェクトの管理においてユーザに同じレベルの注意を保証し、技術的に安定した一貫性を持つことにコミットしています。 シンプルさ:Diffusersライブラリの使用と活用を容易にするため、プロジェクトのゴールをシンプルで一貫性のあるものにすることにコミットしています。 アクセシビリティ:Diffusersプロジェクトは、技術的な専門知識を持たないコントリビュータでも実行できるようにすることで、研究成果をコミュニティによりアクセスしやすくするお手伝いをします。 再現性:Diffusersライブラリを介して提供されるアップストリームのコード、モデル、データセットの再現性について透明性を持つことを目指しています。 責任:コミュニティとチームワークを通じて、この技術の潜在的なリスクと危険を予測し、軽減するために、私たちはユーザに対して共同の責任を持ちます。 さらに、Hugging Faceチームと広くコミュニティによって実装された安全機能とメカニズムの非網羅的なリストを提供しています。 コミュニティタブ:プロジェクトについて議論し、より良いコラボレーションを図るためのコミュニティタブです。 タグ機能:リポジトリの作成者は、コンテンツを「一般公開しない」とタグ付けすることができます。 バイアスの探索と評価:Hugging Faceチームは、Stable DiffusionとDALL-Eのバイアスを対話的にデモンストレーションするスペースを提供しています。この意味で、バイアスの探求と評価をサポート・奨励しています。 デプロイメントにおける安全性の促進 安全なStable Diffusion:ウェブクロールされたデータセットでトレーニングされたStable Diffusionなどのモデルが不適切な退化に苦しむという問題を緩和します。関連論文:Safe Latent Diffusion: Mitigating…
時間をかけて生存者を助け、機械学習を利用して競争する
2023年2月6日、トルコ南東部でマグニチュード7.7と7.6の地震が発生し、10の都市に影響を及ぼし、2月21日現在で4万2000人以上が死亡し、12万人以上が負傷しました。 地震の数時間後、プログラマーのグループが「アフェタリタ」と呼ばれるアプリケーションを展開するためのDiscordサーバーを立ち上げました。このアプリケーションは、捜索救助チームとボランティアが生存者を見つけて支援するために使用されます。このようなアプリの必要性は、生存者が自分の住所や必要なもの(救助を含む)をテキストのスクリーンショットとしてソーシャルメディアに投稿したことから生じました。一部の生存者は、自分が生きていることと救助を必要としていることを、ツイートで伝え、それにより親族が知ることができました。これらのツイートから情報を抽出する必要があり、私たちはこれらを構造化されたデータに変換するためのさまざまなアプリケーションを開発し、展開するために時間との競争をしました。 Discordサーバーに招待されたとき、私たちは(ボランティアとして)どのように運営し、何をするかについてかなりの混乱がありました。私たちは共同でモデルをトレーニングするために、モデルとデータセットのレジストリが必要でした。私たちはHugging Faceの組織アカウントを開設し、MLベースのアプリケーションを受け取り、情報を処理するためのプルリクエストを通じて共同作業しました。 他のチームのボランティアから、スクリーンショットを投稿し、スクリーンショットから情報を抽出し、それを構造化してデータベースに書き込むアプリケーションの需要があることを聞きました。私たちは、与えられた画像を取得し、まずテキストを抽出し、そのテキストから名前、電話番号、住所を抽出し、これらの情報を権限付与された当局に提供するデータベースに書き込むアプリケーションの開発を開始しました。さまざまなオープンソースのOCRツールを試した後、OCR部分には「easyocr」を使用し、このアプリケーションのインターフェースの構築には「Gradio」を使用しました。OCRからのテキスト出力は、トランスフォーマーベースのファインチューニングされたNERモデルを使用して解析されます。 アプリケーションを共同で改善するために、Hugging Face Spacesにホストし、アプリケーションを維持するためのGPUグラントを受け取りました。Hugging Face HubチームはCIボットをセットアップしてくれたので、プルリクエストがSpaceにどのように影響を与えるかを見ることができ、プルリクエストのレビュー中に役立ちました。 その後、さまざまなチャンネル(Twitter、Discordなど)からラベル付けされたコンテンツが提供されました。これには、助けを求める生存者のツイートの生データと、それらから抽出された住所と個人情報が含まれていました。私たちは、まずはHugging Face Hub上のオープンソースのNLIモデルと、クローズドソースの生成モデルエンドポイントを使用したフューショットの実験から始めました。私たちは、xlm-roberta-large-xnliとconvbert-base-turkish-mc4-cased-allnli_trというモデルを試しました。NLIモデルは特に役立ちました。候補ラベルを使用して直接推論でき、データのドリフトが発生した際にラベルを変更できるため、生成モデルはバックエンドへの応答時にラベルを作り上げる可能性があり、不一致を引き起こす可能性がありました。最初はラベル付けされたデータがなかったので、何でも動くでしょう。 最終的に、私たちは独自のモデルを微調整することにしました。1つのGPUでBERTのテキスト分類ヘッドを微調整するのに約3分かかります。このモデルをトレーニングするためのデータセットを開発するためのラベリングの取り組みがありました。モデルカードのメタデータに実験結果を記録し、後でどのモデルを展開するかを追跡するためのリーダーボードを作成しました。ベースモデルとして、bert-base-turkish-uncasedとbert-base-turkish-128k-casedを試しましたが、bert-base-turkish-casedよりも優れたパフォーマンスを発揮することがわかりました。リーダーボードはこちらでご覧いただけます。 課題とデータクラスの不均衡を考慮し、偽陰性を排除することに焦点を当て、すべてのモデルの再現率とF1スコアをベンチマークするためのスペースを作成しました。これには、関連するモデルリポジトリにメタデータタグdeprem-clf-v1を追加し、このタグを使用して記録されたF1スコアと再現率を自動的に取得し、モデルをランク付けしました。漏れを防ぐために別のベンチマークセットを用意し、モデルを一貫してベンチマークしました。また、各モデルをベンチマークし、展開用の各ラベルに対して最適な閾値を特定しました。 NERモデルを評価するために、データラベラーが改善された意図データセットを提供するために取り組んでいるため、クラウドソーシングの取り組みとしてNERモデルを評価するためのラベリングインターフェースを設定しました。このインターフェースでは、ArgillaとGradioを使用して、ツイートを入力し、出力を正しい/正しくない/曖昧などのフラグで示すことができます。 後で、データセットは重複を排除してさらなる実験のベンチマークに使用されました。 機械学習の別のチームは、特定のニーズを得るために生成モデル(ゲート付きAPIの背後)と連携し、テキストとして自由なテキストを使用し、各投稿に追加のコンテキストとしてテキストを渡すためにAPIエンドポイントを別のAPIとしてラップし、クラウドに展開しました。少数のショットのプロンプティングをLLMsと組み合わせて使用することで、急速に変化するデータのドリフトの存在下で細かいニーズに対応するのに役立ちます。調整する必要があるのはプロンプトだけであり、ラベル付けされたデータは必要ありません。 これらのモデルは現在、生存者にニーズを伝えるためにボランティアや救助チームがヒートマップ上のポイントを作成するために本番環境で使用されています。 Hugging Face Hubとエコシステムがなかったら、私たちはこのように迅速に協力し、プロトタイプを作成し、展開することはできませんでした。以下は住所認識および意図分類モデルのためのMLOpsパイプラインです。 このアプリケーションとその個々のコンポーネントには何十人ものボランティアがおり、短期間でこれらを提供するために寝ずに働きました。 リモートセンシングアプリケーション…
StackLLaMA:RLHFを使用してLLaMAをトレーニングするための実践ガイド
ChatGPT、GPT-4、Claudeなどのモデルは、Reinforcement Learning from Human Feedback(RLHF)と呼ばれる手法を使用して、予想される振る舞いにより適合するように微調整された強力な言語モデルです。 このブログ記事では、LlaMaモデルをStack Exchangeの質問に回答するためにRLHFを使用してトレーニングするために関与するすべてのステップを以下の組み合わせで示します: 教師あり微調整(SFT) 報酬/選好モデリング(RM) 人間のフィードバックからの強化学習(RLHF) From InstructGPT paper: Ouyang, Long, et al. “Training language models to follow instructions with human…
カカオブレインからの新しいViTとALIGNモデル
Kakao BrainとHugging Faceは、新しいオープンソースの画像テキストデータセットCOYO(700億ペア)と、それに基づいてトレーニングされた2つの新しいビジュアル言語モデル、ViTとALIGNをリリースすることを発表しました。ALIGNモデルが無料かつオープンソースで公開されるのは初めてであり、ViTとALIGNモデルのリリースにトレーニングデータセットが付属するのも初めてです。 Kakao BrainのViTとALIGNモデルは、オリジナルのGoogleモデルと同じアーキテクチャとハイパーパラメータに従っていますが、オープンソースのCOYOデータセットでトレーニングされています。GoogleのViTとALIGNモデルは、巨大なデータセット(ViTは3億枚の画像、ALIGNは18億の画像テキストペア)でトレーニングされていますが、データセットが公開されていないため、複製することはできません。この貢献は、データへのアクセスも含めて、視覚言語モデリングを再現したい研究者にとって特に価値があります。Kakao ViTとALIGNモデルの詳細な情報は、こちらで確認できます。 このブログでは、新しいCOYOデータセット、Kakao BrainのViTとALIGNモデル、およびそれらの使用方法について紹介します!以下が主なポイントです: 史上初のオープンソースのALIGNモデル! オープンソースのデータセットCOYOでトレーニングされた初のViTとALIGNモデル Kakao BrainのViTとALIGNモデルは、Googleのバージョンと同等のパフォーマンスを示します ViTとALIGNのデモはHFで利用可能です!選んだ画像サンプルでオンラインでViTとALIGNのデモを試すことができます! パフォーマンスの比較 Kakao BrainのリリースされたViTとALIGNモデルは、Googleが報告した内容と同等またはそれ以上のパフォーマンスを示します。Kakao BrainのALIGN-B7-Baseモデルは、トレーニングペアが少ない(700億ペア対18億ペア)にもかかわらず、Image KNN分類タスクではGoogleのALIGN-B7-Baseと同等のパフォーマンスを発揮し、MS-COCO検索の画像からテキスト、テキストから画像へのタスクではより優れた結果を示します。Kakao BrainのViT-L/16は、モデル解像度384および512でImageNetとImageNet-ReaLで評価された場合、GoogleのViT-L/16と同様のパフォーマンスを発揮します。つまり、コミュニティはKakao BrainのViTとALIGNモデルを使用して、特にトレーニングデータへのアクセスが必要な場合に、GoogleのViTとALIGNリリースを再現することができます。最先端の性能を発揮しつつ、オープンソースで透明性のあるこれらのモデルのリリースを見ることができるのはとても興奮します! COYOデータセット これらのモデルのリリースの特徴は、モデルが無料かつアクセス可能なCOYOデータセットでトレーニングされていることです。COYOは、GoogleのALIGN 1.8B画像テキストデータセットに似た700億ペアの画像テキストデータセットであり、ウェブページから取得した「ノイズのある」代替テキストと画像のペアのコレクションですが、オープンソースです。COYO-700MとALIGN 1.8Bは「ノイズのある」データセットですが、最小限のフィルタリングが適用されています。COYOは、他のオープンソースの画像テキストデータセットであるLAIONとは異なり、以下の点が異なります。…
24GBのコンシューマーGPUでRLHFを使用して20B LLMを微調整する
私たちは、trlとpeftの統合を正式にリリースし、Reinforcement Learningを用いたLarge Language Model (LLM)のファインチューニングを誰でも簡単に利用できるようにしました!この投稿では、既存のファインチューニング手法と競合する代替手法である理由を説明します。 peftは一般的なツールであり、多くのMLユースケースに適用できますが、特にメモリを多く必要とするRLHFにとって興味深いです! コードに直接深く入りたい場合は、TRLのドキュメンテーションページで直接例のスクリプトをチェックしてください。 イントロダクション LLMとRLHF 言語モデルとRLHF(Reinforcement Learning with Human Feedback)を組み合わせることは、ChatGPTなどの非常に強力なAIシステムを構築するための次の手段として注目されています。 RLHFを用いた言語モデルのトレーニングは、通常以下の3つのステップを含みます: 1- 特定のドメインまたは命令のコーパスで事前学習されたLLMをファインチューニングする 2- 人間によって注釈付けされたデータセットを収集し、報酬モデルをトレーニングする 3- ステップ1で得られたLLMを報酬モデルとデータセットを用いてRL(例:PPO)でさらにファインチューニングする ここで、ベースとなるLLMの選択は非常に重要です。現時点では、多くのタスクに直接使用できる「最も優れた」オープンソースのLLMは、命令にファインチューニングされたLLMです。有名なモデルとしては、BLOOMZ、Flan-T5、Flan-UL2、OPT-IMLなどがあります。これらのモデルの欠点は、そのサイズです。まともなモデルを得るには、少なくとも10B+スケールのモデルを使用する必要がありますが、モデルを単一のGPUデバイスに合わせるだけでも40GBのGPUメモリが必要です。 TRLとは何ですか? trlライブラリは、カスタムデータセットとトレーニングセットアップを使用して、誰でも簡単に自分のLMをRLでファインチューニングできるようにすることを目指しています。他の多くのアプリケーションの中で、このアルゴリズムを使用して、ポジティブな映画のレビューを生成するモデルをファインチューニングしたり、制御された生成を行ったり、モデルをより毒性のないものにしたりすることができます。…
ディフューザを使用してControlNetをトレーニングしてください
イントロダクション ControlNetは、追加の条件を付加することで拡散モデルを細かく制御することができるニューラルネットワーク構造です。この技術は、「Adding Conditional Control to Text-to-Image Diffusion Models」という論文で登場し、すぐにオープンソースの拡散コミュニティで広まりました。著者はStable Diffusion v1-5を制御するための8つの異なる条件をリリースしました。これには、ポーズ推定、深度マップ、キャニーエッジ、スケッチなどが含まれます。 このブログ投稿では、3Dシンセティックフェイスに基づいた顔のポーズモデルであるUncanny Facesモデルのトレーニング手順を詳細に説明します(実際にはUncanny Facesは予期しない結果であり、それがどのように実現されたかについては後ほどご紹介します)。 安定した拡散のためのControlNetのトレーニングの始め方 独自のControlNetをトレーニングするには、3つのステップが必要です: 条件の計画:ControlNetはStable Diffusionをさまざまなタスクに対応できる柔軟性があります。事前にトレーニングされたモデルはさまざまな条件を示しており、コミュニティはピクセル化されたカラーパレットに基づいた他の条件を作成しています。 データセットの構築:条件が決まったら、データセットの構築の時間です。そのためには、データセットをゼロから構築するか、既存のデータセットの一部を使用することができます。モデルをトレーニングするためには、データセットには3つの列が必要です:正解のimage、conditioning_image、およびprompt。 モデルのトレーニング:データセットの準備ができたら、モデルのトレーニングの時間です。これは、ディフューザーのトレーニングスクリプトのおかげで最も簡単な部分です。少なくとも8GBのVRAMを持つGPUが必要です。 1. 条件の計画 条件を計画するために、次の2つの質問を考えると役立ちます: どのような条件を使用したいですか? 既存のモデルで「通常の」画像を私の条件に変換できるものはありますか?…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.