Learn more about Search Results the Hub - Page 8

「ニュースレコメンデーションのための大規模な言語モデルとベクトルデータベース」

大規模言語モデル(LLM)は、Chat-GPTやBardなどの生成型AIツールの最新リリースにより、機械学習コミュニティ全体で大きな話題となりましたその中核となるアイデアの1つは...

SalesForce AI 研究 BannerGen マルチモダリティ バナー生成のためのオープンソース ライブラリ

効果的なグラフィックデザインは成功したマーケティングキャンペーンの基盤です。それはデザイナーと視聴者の間のコミュニケーション橋渡しを行い、ユーザーを魅了し、重要な詳細を強調し、キャンペーンの視覚的な外観を向上させます。しかし、現在の方法は時間のかかるものであり、層ごとの組み立て作業が必要です。これには専門知識が必要であり、スケーラブルにはなりません。 上記の問題を解決するために、Salesforceの研究者は、生成型AIの力を活用してデザインプロセスを効率化するオープンソースのライブラリBannerGenを導入しました。このライブラリには、3つの並列マルチモーダルバナージェネレーションメソッド、LayoutDETR、LayoutInstructPix2Pix、およびFramed Template RetrieveAdapterが含まれます。それぞれが大量のデザイングラフィックデータでトレーニングを受けており、デザインプロセスを迅速化できます。さらに、これらすべてがBannerGenのGitHubリポジトリでオープンソース化されており、Pythonモジュールとしてインポートできるため、開発者は各メソッドで実験することが容易です。BannerGenには、ライセンスされたフォントと注意深く作成されたテンプレートもあり、開発者は高品質のデザインを構築することができます。 ユーザーはバナーを作成したい画像をアップロードすることができます。その画像は、主要な要素に焦点を当てて複数のサブイメージにクロッピングされます。ユーザーはまた、希望するバナーのタイプと含めたいテキストを指定することもできます。サブイメージは選択したテンプレートに統合され、見事なビジュアルが作成されます。最終的なデザインはHTMLファイルとPNGファイルとして生成されます。 研究者はVAEGANフレームワークを取り入れて、生成されたデザインを現実のパターンに合わせるようにしました。DETRアーキテクチャもBannerGenに組み込まれ、LayoutDETRとして言及されています。研究者はDETRデコーダを変更して、マルチモーダルの前景入力を処理できるようにしました。このアーキテクチャにより、BannerGenは背景と前景要素をより良く理解することができ、より良い結果を生み出します。 BannerGenは、拡散モデルによって強化された画像から画像への編集技術であるInstructPix2Pixも組み込んでいます。それは背景画像をテキストが重ねられた画像に変換するように微調整されています。 3番目のメソッドであるFramed Template RetrieveAdapterは、生成されたデザインの多様性を向上させるために使用され、3つのコンポーネントで構成されています。メトリクスに基づいて最適なフレームを見つけるリトリーバー、フレームに適合するように入力画像とテキストをカスタマイズするアダプター、背景レイヤーとユーザーの入力を統合してHTML/CSSでデザインを生成するレンダラーです。 まとめると、BannerGenは生成型AIを活用してユーザーがシームレスにカスタマイズされたバナーを作成できる強力で多機能なフレームワークです。BannerGenのアーキテクチャは実際のレイアウトから学ぶように設計されており、背景と前景要素を理解することができます。最終的なデザインはHTMLファイルとPNGファイルとして生成され、手動で簡単に調整することができ、すぐに使用できるように任意のメディアに埋め込むことができます。BannerGenはグラフィックデザインのプロセスを時間のかかるものから解放し、ユーザーが高品質でプロフェッショナルなデザインを生成するのを支援します。 この記事はSalesForce AI Research BannerGen: An Open-Source Library for Multi-Modality Banner GenerationがMarkTechPostに最初に掲載されました。

新たな研究が、AIの隠れた脆弱性を明らかにする

人工知能(AI)の急速に進化する風景では、変革的な変化の約束は、革新的な自動車が交通を再構築するという前途洋々の可能性から、複雑な医療画像の解釈でAIを洗練された利用にまで及ぶ様々な分野に広がります AI技術の進歩は、デジタルルネサンスに匹敵するものであり、溢れる未来を予感させています...

すべての開発者が知るべき6つの生成AIフレームワークとツール

この記事では、トップのジェネラティブAIフレームワークとツールについて探求しますあなたの想像力を解き放ち、ジェネラティブAIの可能性を探究するために必要なリソースを発見してください

「2023年のAI タイムライン」

はじめに 人工知能(AI)は、技術的な進歩が人間のつながりの本質と共鳴する形で私たちの日常生活と交差する魅力的な領域です。今年は、単なるアルゴリズムを超えてAIを身近に感じる革新の物語が展開されました。2023年のAIの素晴らしいハイライトを探索しながら、この旅に参加しましょう。 AI 2023年のハイライト 2023年のAIの世界で行われた最大の発見、進歩、および世界的な変革の一部を紹介します。これらの進歩がどのように、技術が私たちの人間の体験にシームレスに統合される未来を形作っているのか、探求してみましょう。 2023年1月のAIハイライト この年は、AIが医療と健康の分野で重要な進展を示しました。MITの研究者はマサチューセッツ総合病院と連携し、CTスキャンに基づいて患者の肺がんのリスクを評価できるディープラーニングモデルを開発しました。また、革命的な進歩として、研究者たちはAIを使ってゼロから人工的な酵素やタンパク質を作り出すことが可能なAIを開発しました。 他にも多くのイノベーションの中で、人工知能は視覚障害のある人々が食料品を見つけるのを手助けするために手杖に統合されました。一方、ビジネスのフロントでは、OpenAIがMicrosoftとの数年間にわたる数十億ドルの取引を通じてAIの開発に大きく投資しました。 2023年2月のAIハイライト 2023年2月には、OpenAIのChatGPTに関する話題が最も盛り上がりました。このAI搭載のチャットボットは、アメリカ合衆国医師資格試験(USMLE)に合格し、その人気は1億人以上のユーザーにまで急上昇しました。 ChatGPTの現象に応えて、GoogleはAI会話の領域に新しい要素となるBard A.I.を導入しました。また、MicrosoftもChatGPTと統合された新しいBing検索エンジンの導入に重要な一歩を踏み出しました。 Metaは、Metaエコシステム内でAIの能力を向上させるというLLaMAを発表しました。一方、Amazon Web Services(AWS)は、一流のAIプラットフォームであるHugging Faceと提携し、AI開発者を支援しました。 画期的な成果として、オックスフォードの研究者たちはRealFusionを示し、単一の画像から完全な360°写真モデルを再構築することができる最新のモデルを実証しました。 2023年2月には、AIの世界は音楽生成の領域にも足を踏み入れました。Google ResearchはMusicLMを紹介し、さまざまなジャンル、楽器、概念で曲を作成できるトランスフォーマーベースのテキストからオーディオへのモデルを提供しました。一方、Baiduの研究者はERNIE-Musicを発表し、拡散モデルを使用して、波形領域での最初のテキストから音楽を生成するモデルを開発しました。これらのモデルは、AIと創造的表現の融合における重要な進歩を示しています。 2023年3月のAIハイライト 2023年3月には、創造的なAIはいくつかの興味深い進展を見せました。AdobeはFireflyというAIをバックアップする画像生成および編集ツールの範囲でGenAIの領域に参入しました。一方、Canvaはユーザー向けにAIパワードの仮想デザインアシスタントとブランドマネージャーを導入しました。 テックジャイアンツのAIプロジェクトは、第1四半期終盤に向けて全力で進展していました。OpenAIはChatGPTとWhisperというテキストから音声へのモデルのためのAPIを発売しました。OpenAIはまた、ChatGPTのためのいくつかのプラグインをリリースし、最も高度なAIモデルであるGPT-4を正式に発表しました。 HubSpotはユーザー向けにChatSpot.aiとContent Assistantという2つの新しいAIパワードツールを導入しました。ZoomはスマートコンパニオンのZoom…

「QLoRAを使ってLlama 2を微調整し、AWS Inferentia2を使用してAmazon SageMakerに展開する」

この記事では、パラメータ効率の良いファインチューニング(PEFT)手法を使用してLlama 2モデルを微調整し、AWS Inferentia2上でファインチューニングされたモデルを展開する方法を紹介します AWS Neuronソフトウェア開発キット(SDK)を使用してAWS Inferentia2デバイスにアクセスし、その高性能を活用しますその後、[…]の動力を得るために、大きなモデル推論コンテナを使用します

Amazon BedrockとAmazon Transcribeを使用して、生成AIを使用して録音のサマリーを作成します

「会議のメモは共同作業の重要な一部ですが、しばしば見落とされてしまいます討論を主導し、注意深く聞きながらメモを取ることは、重要な情報が記録されずに逃げてしまうことが簡単ですメモが取られていても、整理されていないか、読みづらいことがあり、無意味になってしまうこともありますこの記事では、Amazonを使った効果的なメモの使い方について探っています」

「AIは詐欺検出にどのように使われていますか?」

西部劇にはガンスリンガー、銀行強盗、賞金が存在しましたが、今日のデジタルフロンティアではアイデンティティ盗難、クレジットカード詐欺、チャージバックが広まっています。 金融詐欺による収益は、数十億ドル規模の犯罪企業となっています。詐欺師の手に渡る「生成AI」は、これをさらに収益化することを約束します。 世界的には、2026年までにクレジットカードによる損失は430億ドルに達する見込みです。これはニルソン・レポートによるものです。 金融詐欺は、ハッキングされたデータをダークウェブから収集してクレジットカードの盗難に利用するなど、さまざまな手法で行われます。「生成AI」を用いて個人情報をフィッシングする場合もあり、仮想通貨、デジタルウォレット、法定通貨間での資金洗浄も行われています。デジタルの裏世界にはさまざまな金融詐欺が潜んでいます。 対応するために、金融サービス企業は詐欺検出にAIを活用しています。なぜなら、これらのデジタル犯罪の多くはリアルタイムで停止し、消費者や金融企業がすぐに損失を止める必要があるからです。 では、詐欺検出にはAIはどのように活用されているのでしょうか? 詐欺検出のためのAIは、顧客の行動と関連、アカウントのパターンや詐欺特性に合致する行動の異常を検出するために、複数の機械学習モデルを使用しています。 生成AIは詐欺の共同パイロットとして活用できる 金融サービスの多くはテキストと数字を扱うものです。生成AIや大規模言語モデル(LLMs)は、意味と文脈を学習する能力を持ち、新しいレベルの出力と生産性を約束するため、産業全体に破壊的な能力をもたらします。金融サービス企業は、生成AIを活用してより賢明かつ能力の高いチャットボットを開発し、詐欺検出を改善することができます。 一方で、悪意のある者は巧妙な生成AIのプロンプトを使用してAIのガードレールを回避し、詐欺に利用することができます。また、LLMsは人間のような文章を生成することができ、詐欺師はタイプミスや文法の誤りのない文脈に沿ったメールを作成することができます。さまざまなバリエーションのフィッシングメールを素早く作成することができるため、生成AIは詐欺行為を実行するための優れた共同パイロットとなります。詐欺GPTなど、生成AIをサイバー犯罪に悪用するためのダークウェブツールもあります。 生成AIは声認証セキュリティにおける金融被害にも悪用されることがあります。一部の銀行は声認証を使用してユーザーを認証しています。攻撃者がボイスサンプルを入手することができれば、ディープフェイク技術を使用して銀行の顧客の声をクローンすることができ、このシステムを破ろうとします。声データは、スパムの電話で集めることができます。 チャットボットの詐欺は、LLMsやその他の技術を使用して人間の行動をシミュレートすることに対する懸念があります。これらはインポスター詐欺や金融詐欺に応用されるディープフェイクビデオと音声クローンのためのものです。米国連邦取引委員会はこの問題に対して懸念を表明しています。 生成AIは不正使用と詐欺検出にどのように取り組んでいるのか? 詐欺審査には強力な新しいツールがあります。マニュアル詐欺審査を担当する従業員は、ポリシードキュメントからの情報を活用するために、バックエンドでRAGを実行するLLMベースのアシスタントのサポートを受けることができます。これにより、詐欺事件がどのようなものかを迅速に判断し、プロセスを大幅に加速することができます。 LLMsは、顧客の次の取引を予測するために採用されており、支払い企業は事前にリスクを評価し、詐欺取引をブロックすることができます。 生成AIはまた、トランザクション詐欺を撲滅するために精度を向上させ、レポートを生成し、調査を減らし、コンプライアンスリスクを軽減するのに役立ちます。 不正防止のための生成AIの重要な応用例の1つとして、「合成データ」の生成があります。合成データは、詐欺検出モデルのトレーニングに使用するデータレコードの数を増やし、詐欺師が最新の手法を認識するための例のバラエティと洗練度を高めることができます。 NVIDIAは、生成AIを活用してワークフローを構築し、情報検索のために自然言語プロンプトを使用するチャットボットと仮想エージェントを作成するためのツールを提供しています。 NVIDIAのAIワークフローを活用することで、様々なユースケースに対して正確な応答を生成するためのエンタープライズグレードの機能を迅速に構築し、展開することができます。これには、ファウンデーションモデル、NVIDIA NeMoフレームワーク、NVIDIA Triton Inference Server、GPUアクセラレートベクトルデータベースが使用され、RAGによって強化されたチャットボットが展開されます。 安全性に焦点を当てた産業では、悪用されにくいように生成AIを保護するための取り組みが行われています。NVIDIAはNeMoガードレールをリリースし、OpenAIのChatGPTなどのLLMsによって動作するインテリジェントアプリケーションが正確で適切、トピックに即して安全であることを確保するために役立てています。…

「現実の応用における一般線形モデルの自己相関問題の解決方法」

線形回帰分析における最大の問題の1つは自己相関のある残差ですこの文脈で、この記事では線形回帰分析を再考し、Cochrane-Orcutt手続きを解決策として詳しく取り上げます

BERTopic(バートピック):v0.16の特別さは何なのでしょうか?

私のBERTopicへの野望は、重要な柔軟性とモジュール性を提供することにより、トピックモデリングのための一括ショップにすることですこれは過去数年間の目標であり、リリースによって達成されました...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us