Learn more about Search Results Seaborn - Page 8
- You may be interested
- 「DRESS」とは、自然言語フィードバックを...
- 「OpenAIのDevDay 2023がAIの発展とカスタ...
- 「Langchainのチャットボットソリューショ...
- 「生成AIツールが自己学習のためのテキス...
- 「2024年を定義する7つのデータサイエンス...
- アラウカナXAI:医療における意思決定木を...
- 「新しいAI研究が、PanGu-Coder2モデルとR...
- Amazon SageMakerを使用して、ML推論アプ...
- 世界初のAI搭載アーム:知っておくべきすべて
- 究極のGFNサーズデー:41の新しいゲームに...
- 「インダストリー4.0 メタバースの解放:A...
- 「LLMsにおけるエンタープライズ知識グラ...
- 「データサイエンスのベストプラクティス...
- 無料でGoogle Colab上でQLoraを使用してLL...
- クラスタリング手法の可視化
自己学習のためのデータサイエンスカリキュラム
はじめに データサイエンティストになる予定ですが、どこから始めればいいかわからないですか?心配しないでください、私たちがお手伝いします。この記事では、自己学習のためのデータサイエンスカリキュラム全体と、プロセスを早めるためのリソースとプログラムのリストをカバーします。 このカリキュラムでは、優れたデータサイエンティストになるために必要なツール、トリック、知識の基礎をカバーしています。もし科学と統計について少し知識があるなら、良い位置にいます。これらのことについて初めて知る場合は、まずそれらについて学ぶと役立つかもしれません。そして、既にデータに詳しい場合は、これはクイックな復習になるかもしれません。 覚えておいてください、すべてのプロジェクトでこれらのスキルをすべて使うわけではありません。一部のプロジェクトでは、このリストにない特別なトリックやツールが必要です。しかし、このカリキュラムの内容を十分に理解し、習得すると、ほとんどのデータサイエンスの仕事に対応できるようになります。そして、必要なときに新しいことを学ぶ方法も知っています。 さあ、始めましょう! データサイエンスカリキュラムをなぜフォローするのか? データサイエンスのカリキュラムに従うことは、構造化された効果的な学習には欠かせません。これにより、知識とスキルを習得するための明確なパスが提供され、この分野の広大さに圧倒されることなく学ぶことができます。良いカリキュラムは包括的なカバレッジを保証し、基礎的な概念から高度なテクニックまでを案内します。このステップバイステップのアプローチは、複雑なトピックに深入りする前に、堅固な基盤を築くための基礎となります。 さらに、カリキュラムは実践的な応用を促進します。多くのプログラムにはハンズオンのプロジェクトや演習が含まれており、理論的な知識を実世界のスキルに変換することができます。進捗を体系的に追跡することで、学習の旅においてモチベーションを保ち、集中する助けとなります。 即効的な利点を超えて、カリキュラムに従うことは職業にも役立ちます。データサイエンスの構造化された教育を完了することは、潜在的な雇用主に対してコミットメントと熟練度を示し、仕事の見通しを向上させます。さらに、このアプローチは適応性を育成し、自身のニーズに合わせてペースを調整し、困難なテーマに深入りすることができるようにします。 要するに、データサイエンスのカリキュラムは必須のスキルを身につけるだけでなく、データサイエンスの常に進化する分野で独立して学び続ける能力を養うことも可能です。 自己学習のためのデータサイエンスカリキュラム 以下は、データサイエンスの旅を始める際に探索するための主要な領域の簡略化されたロードマップです: 数学の基礎 多変数微積分:複数の変数の関数、導関数、勾配、ステップ関数、シグモイド関数、コスト関数などを理解する。 線形代数:ベクトル、行列、転置や逆行列などの行列演算、行列式、内積、固有値、固有ベクトルを習得する。 最適化手法:コスト関数、尤度関数、誤差関数などについて学び、勾配降下法(および確率的勾配降下法などの変種)などのアルゴリズムを理解する。 プログラミングの基礎 PythonまたはRを主要な言語として選択する。 Pythonの場合、NumPy、pandas、scikit-learn、TensorFlow、PyTorchなどのライブラリを習得する。 データの基礎 さまざまな形式(CSV、PDF、テキスト)でのデータ操作を学ぶ。 データのクリーニング、補完、スケーリング、インポート、エクスポート、Webスクレイピングのスキルを習得する。 PCAやLDAなどのデータ変換や次元削減の手法を探索する。 確率と統計の基礎…
Pythonで相関行列を作成する7つの方法
正直になりましょう、プレーンバニラの相関行列はつまらないです同様に、人気のあるペアプロットもつまらないです有用ではありますが、つまらないですバニラのデザートを嫌いではありませんが🍦 🍨 🍦 🍨 🍦 もし同感であれば、この記事は...
農業におけるビジョン・トランスフォーマー | 革新的な収穫
はじめに 農業は常に人類文明の基盤であり、数十億人に生計と食料を提供してきました。技術の進歩により、農業の実践を向上させるための新たで革新的な方法が見つかっています。そのような進歩の一つが、Vision Transformers(ViTs)を使用して作物の葉の病気を分類することです。このブログでは、農業におけるビジョン・トランスフォーマーが、作物の病気の特定と軽減のための効率的かつ正確な解決策を提供することで、革命を起こしていることを探求します。 キャッサバ、またはマニオクまたはユカは、食事の主食から産業用途までさまざまな用途がある多目的な作物です。その耐久性と強靭さは、栽培条件の厳しい地域で不可欠な作物です。しかし、キャッサバの植物はさまざまな病気に対して脆弱であり、CMDとCBSDが最も破壊的なものの一部です。 CMDは、ホワイトフライによって伝播される複数のウイルスによって引き起こされ、キャッサバの葉に重度のモザイク症状を引き起こします。一方、CBSDは、2つの関連するウイルスによって引き起こされ、主に貯蔵根に影響を与え、食用に適さなくします。これらの病気を早期に特定することは、広範な作物被害を防ぐために重要であり、食料の安全保障を確保するために不可欠です。Vision Transformersは、自然言語処理(NLP)のために最初に設計されたトランスフォーマー・アーキテクチャの進化形であり、視覚データの処理に非常に効果的であることが証明されています。これらのモデルは、パッチのシーケンスとして画像を処理し、データ内の複雑なパターンと関係を捉えるために自己注意機構を使用します。キャッサバの葉の病気分類の文脈では、ViTsは感染したキャッサバの葉の画像を分析してCMDとCBSDを特定するために訓練されます。 学習成果 ビジョン・トランスフォーマーとそれらが農業にどのように適用され、特に葉の病気の分類においてどのように使用されるかを理解する。 トランスフォーマー・アーキテクチャの基本的な概念、自己注意機構などの理解し、これらが視覚データの処理にどのように適応されるかを学ぶ。 キャッサバの葉の病気の早期検出のために農業におけるビジョン・トランスフォーマー(ViTs)の革新的な利用方法を理解する。 スケーラビリティやグローバルなコンテキストなどのビジョン・トランスフォーマーの利点、および計算要件やデータ効率などの課題についての洞察を得る。 この記事は、Data Science Blogathonの一環として公開されました。 ビジョン・トランスフォーマーの台頭 コンピュータビジョンは、畳み込みニューラルネットワーク(CNN)の開発により、近年大きな進歩を遂げています。CNNは、画像分類から物体検出まで、さまざまな画像関連のタスクのための定番アーキテクチャとなっています。しかし、ビジョン・トランスフォーマーは、視覚情報の処理に新しい手法を提供する強力な代替手段として台頭しています。Google Researchの研究者たちは、2020年に「画像は16×16の単語に値する:スケールでの画像認識のためのトランスフォーマー」という画期的な論文でビジョン・トランスフォーマーを紹介しました。彼らは、もともと自然言語処理(NLP)のために設計されたトランスフォーマー・アーキテクチャをコンピュータビジョンの領域に適応させました。この適応により、新たな可能性と課題が生まれました。 ViTsの使用は、従来の方法に比べていくつかの利点を提供しています。それには以下のものがあります: 高い精度:ViTsは高い精度であり、葉の病気の信頼性のある検出と区別が可能です。 効率性:訓練された後、ViTsは画像を素早く処理できるため、現場でのリアルタイム病気検出に適しています。 スケーラビリティ:ViTsはさまざまなサイズのデータセットを処理できるため、さまざまな農業環境に適応できます。 汎化性:ViTsはさまざまなキャッサバの品種や病気のタイプに汎化することができ、各シナリオごとに特定のモデルが必要な必要性を減らします。 トランスフォーマー・アーキテクチャの概要 ビジョン・トランスフォーマーに入る前に、トランスフォーマー・アーキテクチャの核心的な概念を理解することが重要です。トランスフォーマーは、もともとNLPのために設計され、言語処理のタスクを革新しました。トランスフォーマーの主な特徴は、自己注意機構と並列化であり、より包括的な文脈理解とより高速なトレーニングを可能にします。…
「多変量カテゴリデータを処理するためのPythonによる7つの可視化」
一般的なデータ、たとえばよく知られたアヤメやペンギンのデータセットなど、分析に使用されるデータは、カテゴリ変数が少ないため非常にシンプルですところで、現実世界のデータはより複雑であります…
「教科書で学ぶ教師なし学習:K-Meansクラスタリングの実践」
このチュートリアルでは、K-Meansクラスタリングの主要な概念と実装についての実践的な経験を提供しますK-Meansは人気のある教師なし学習アルゴリズムであり、顧客セグメンテーションやターゲテッド広告のアプリケーションに使用されます
「ExcelでのPython:これがデータサイエンスを永遠に変える」
「ExcelでPythonコードを実行してデータを分析し、機械学習モデルを構築し、可視化を作成することができます」
VoAGIニュース、9月13日:5つのステップでSQLを始める • データサイエンスにおけるデータベース入門
「5つのステップでSQLを始める • データサイエンスにおけるデータベースの紹介 • Time 100 AI 最も影響力のあるもの?」
「Pythonにおける記述統計と推測統計の適用」
データサイエンスの道を進むにつれて、知っておくべき基本的な統計情報を以下に示します
「PythonとMatplotlibを使用して米国のデータマップを作成する方法」
今日、公共ドメインで無料で利用できるジオデータとFacebook Connectivity Indexを使用して、上記のデータ可視化を作成する方法を教えますこのような地図は…
「ExcelでのPython 高度なデータ分析への扉を開く」
イントロダクション マイクロソフトは、Pythonプログラミング言語をExcelに統合することを発表し、その分野での重要な進歩を遂げました。基礎的なデータ管理、分析、可視化ツールであるMicrosoft Excelは、Pythonの機能を組み込むことで、分析能力を大幅に向上させました。この統合は、データ分析、機械学習、予測分析、データクリーニングの重要なマイルストーンであり、馴染みのあるExcel環境からシームレスにアクセスできます。このイノベーションは、Pythonプログラミング言語の高度な機能と認識性の高いExcelインターフェースを組み合わせ、2つの間のギャップを効果的に埋めるものです。マイクロソフトは、公開プレビューとしてExcel内のPythonの正式なローンチを行いました。この機能により、Pythonスクリプトの強力な機能とExcelの柔軟で馴染みのある数式を1つのワークブック内でシームレスに統合することができます。 Excelのユーザーは、Pythonのデータを使用して数式やチャートを作成することができます。また、MatplotlibやSeabornなどのチャートライブラリを統合して、ヒートマップ、バイオリンプロット、スワームプロットなどの可視化を設計することもできます。このイノベーションへの独占的な早期アクセスは、Excel for Windowsのベータチャネルリリースを通じてMicrosoft 365 Insidersに提供されます。 この記事は、データサイエンスブログマラソンの一環として公開されました。 = PY ()で簡略化 PythonをExcelで利用するには、セルを選択し、リボンの「数式」タブにアクセスし、「Pythonの挿入」をクリックします。これにより、Excelは指定したセル内でPythonの数式を作成する意図を認識します。または、=PYという関数を使用します。コードのような編集動作を行うために、数式バーを使用することもできます。 コードの編集には数式バーを使用し、プログラミングのように行を追加するためにEnterキーを押します。複数のコード行を一度に表示するためには、数式バーの下向き矢印アイコンをクリックして数式バーを拡大します。 Excel内では、Pythonライブラリの強力な機能を利用して、可視化の作成、機械学習モデルの作成、高度な分析を行うことができます。PythonコードをExcelセルに直接入力できるようにするために、新しいPY関数が導入されました。PythonをExcelで使用するためには、追加のツールをインストールする必要はありません。Excelリボンの「数式」セクションで「Pythonの挿入」ボタンをクリックした後、Pythonコードの記述を開始することができます。 組み込みのXL() Python関数 組み込みのxl() Python関数は、ワークブックからデータを送信することができ、=PY()の結果としてPythonコードの出力を返すことができます。デフォルトでは、Pythonセルは出力形式をExcelの値に設定し、セルのコードによって生成されたPythonオブジェクトの値をExcelの出力に似た形式に変換します。 Excelは、組み込みのコネクタを提供し、外部データのインポートを容易にするためにPower QueryというMicrosoftのデータ操作ツールを利用しています。 外部ソースからデータをインポートする場合は、Excelの「取得と変換」機能を利用してください。この機能は、インポートプロセスを容易にするためにPower Queryを使用します。PythonをExcelで使用して作業する場合、データはワークシートから取得するか、Power Queryを介して取得する必要があります。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.