Learn more about Search Results Pi - Page 8
- You may be interested
- マイクロソフトリサーチがBatteryMLを紹介...
- NVIDIA RTXビデオスーパーレゾリューショ...
- 合成データプラットフォーム:構造化デー...
- query()メソッドを使用してPandasデータフ...
- データ駆動型の世界で理解すべき重要な統...
- 『アメリカでデータサイエンティストにな...
- スタンフォードの研究者たちは、Parselと...
- このAI論文では、「Retentive Networks(R...
- 「プロンプトエンジニアリングによるAIの...
- 「ジオスペーシャルデータの同時変化を示...
- 「何を餌にしたの?このAIモデルは拡散モ...
- 「AIは政治をより簡単、安価かつ危険にする」
- 「7/8から13/8までの週のトップ重要なコン...
- 水中探査の革命:ブラウン大学のプリオボ...
- 「AIで生成されたコードはさらにテストが...
「Google ResearchがMediaPipe FaceStylizerを紹介:少数のショットでの効率的な顔スタイリゼーションのための設計」
近年、研究者や消費者は、拡張現実(AR)を組み合わせたスマートフォンアプリケーションに対する関心を高めています。これにより、ユーザーはリアルタイムで短いビデオ、VR、ゲームのために顔の特徴を生成し変更することができます。生成的対抗ネットワーク(GAN)アプローチに基づく顔の生成と編集モデルは、優れた品質を維持しながら軽量であるため、人気があります。しかし、ほとんどのGANモデルは、計算の複雑さに厳しい制限があり、膨大なトレーニングデータセットを必要とします。また、GANモデルの倫理的な使用も重要です。 Googleの研究者は、これらのモデルの複雑さとデータ効率性を考慮したfew-shot顔スタイリゼーションの効果的な解決策として、MediaPipe FaceStylizerを開発しました。このモデルでは、GANの逆変換が画像を顔生成器の潜在コーディングに変換します。彼らは、粗いから細かいまでの粒度で高品質の画像を生成するために、顔生成器用のモバイルフレンドリーな合成ネットワークを導入しました。このネットワークには、各生成器レベルで特徴をRGBに変換する補助ヘッドも備えています。さらに、彼らは教師StyleGANモデルから学生ジェネレータを蒸留し、前述の補助ヘッドの損失関数を注意深く設計し、共通のGAN損失関数と組み合わせることで、良好な生成品質を維持する軽量なモデルを作り出しました。MediaPipeは提案されたソリューションへのオープンソースアクセスを提供しています。MediaPipe Model Makerを使用すると、ユーザーはジェネレータを微調整して1つまたは数枚の写真からスタイルを学ぶことができます。MediaPipe FaceStylizerにより、結果のモデルをデバイス上の顔スタイリゼーションアプリケーションに展開することができます。 MediaPipe Faceスタイライザータスクのヘルプを受けて、画像やビデオの中の顔を強化またはゼロから作成することができます。この活動により、幅広い美的オプションを持つ仮想キャラクターが作成されることがあります。 このタスクには、顔生成器と顔エンコーダを含むBlazeFaceStylizerモデルが使用されます。StyleGANモデルファミリーの軽量な実装であるBlazeStyleGANは、与えられた美的に合わせた顔を生成および洗練します。顔エンコーダは、入力写真を顔生成器によって生成された顔と関連付けます。 このプロジェクトの目的は、MediaPipe FaceStylizerモデルを様々なスタイルに合わせて微調整するのに役立つパイプラインを提供することです。研究者は、GANの逆変換エンコーダと効果的な顔生成器モデルを使用して、顔スタイリゼーションパイプラインを構築しました(詳細は以下参照)。エンコーダとジェネレータのパイプラインは、さまざまなスタイルの少数の例でトレーニングすることができます。まず、ユーザーは目的の美意識の代表的なサンプルを1つまたは複数送信します。微調整手順では、エンコーダモジュールは凍結され、ジェネレータのみが調整されます。入力スタイル画像のエンコーディング出力周辺のいくつかの潜在コードをサンプリングしてジェネレータをトレーニングします。その後、共通の美意識のある画像と同じ美意識で顔画像を再構築するために、ジョイント対立損失関数を最適化します。この微調整プロセスにより、MediaPipe FaceStylizerはユーザーの入力に柔軟に対応することができます。この方法では、実際の人間の顔のテスト写真にスタイリゼーションを適用することができます。 Googleの研究チームは、BlazeStyleGANを教師モデルとして広く使用されているStyleGAN2を使って知識蒸留を行いました。さらに、学習プロセスにマルチスケールパーセプチュアル損失を導入することで、モデルがより良い画像を生成するようにトレーニングしました。BlazeStyleGANはMobileStyleGANよりもパラメータが少なく、モデルが簡素化されています。彼らはBlazeStyleGANをいくつかのモバイルデバイスでベンチマークテストし、モバイルGPUでリアルタイム速度で実行できることを示しました。BlazeStyleGANの出力は、教師モデルと非常に近い視覚的品質を持っています。彼らはまた、BlazeStyleGANが教師モデルによって生成されるアーティファクトを減らすことで、一部の状況で視覚的品質を向上させることができると述べています。BlazeStyleGANのFrechet Inception Distance(FID)の結果は、教師のStyleGANの結果と比較可能です。以下に貢献の概要を示します: 研究者は、各生成器レベルで追加のUpToRGBヘッドを追加し、推論中のみ使用することで、モバイルフレンドリーなアーキテクチャを作成しました。 補助ヘッドを使用してマルチスケールのパーセプチュアル損失を計算し、実際の画像に対する対立損失を計算することで、蒸留技術を向上させ、画像生成を改善し、教師モデルのアーティファクトの影響を軽減しました。 BlazeStyleGANは、さまざまな人気のあるスマートフォン上でリアルタイムで高品質の画像を生成することができます。 Googleの研究チームは、ほとんどのプレミアムスマートフォンでリアルタイムに高品質な顔写真を生成できる世界初のStyleGANモデル(BlazeStyleGAN)を開発しました。効率的なオンデバイス生成モデルにはまだ多くの探索の余地があります。教師モデルのアーティファクトの影響を軽減するために、StyleGAN合成ネットワークの洗練されたアーキテクチャと蒸留技術の微調整を行いました。BlazeStyleGANは、モデルの複雑さが大幅に削減されたため、モバイルデバイスでリアルタイムのパフォーマンスを実現することができます。
ChatGPT APIへの適切な方法での通話の作り方
「LLMsは今や至る所に存在していますが、特にChatGPTはその中でも非常に多くのアプリケーションが構築されていますもしまだ試していないのであれば、ぜひ試してみるべきですChatGPTをベースにアプリケーションを構築することで、おそらく...」
「Microsoftは、AIの著作権争いを引き起こした場合でも、有料のCopilotの顧客を保護します」
「不運だね、ただ乗りの人たちよ:君たちは自力でやっていくしかないよ」
BERTopicを使用したクラスごとのトピック
「私たちには何十万ものテキストがありますそれらをすべて読んで洞察を得るには数年かかるでしょう幸いなことに、このプロセスを自動化するのに役立つ多くのデータサイエンスのツールがありますそのようなツールの一つは…」
「UCLAの研究者たちは、広帯域の回折光学ニューラルネットワークに基づいて設計されたマルチスペクトルQPIシステムを紹介する」
量子位相イメージング(QPI)は、多くの科学および顕微鏡の分野での最先端のイメージング手法です。透明または半透明の材料を通過する際の光の光路差の最小の違いを定量化し、視覚化することが可能です。サンプル内部の屈折率分布や厚さの変化を、この非侵襲的な、ラベルフリーの手法で学ぶことができます。 マルチスペクトル量子位相イメージング(QPI)システムは、この基本原理に基づいて、興味のある波長またはスペクトルバンドの複数の位相画像を取得することにより、サンプルの屈折率と厚さに関する情報を導き出します。光が試料と相互作用する際に経験する位相シフトを評価することで、情報を得ます。 QPIは、伝統的な生物医学の分野以外でも、細胞生物学、病理学、生物物理学などを含むいくつかの科学分野で有用です。生物界面の評価のための表面科学や、光学部品や薄膜、ナノ粒子の特性評価のための材料科学などでも使用されます。その機能には、細胞内の構造やプロセスの研究、細胞の成長と挙動のリアルタイムモニタリング、がんの検出、病原体の検出、薄膜厚さの測定、光学的品質の評価、表面の粗さの解析などが含まれます。 したがって、QPIについては、研究者による徹底的な研究が行われており、カリフォルニア大学ロサンゼルス校(UCLA)の電気・コンピュータ工学部の研究者たちは、マルチスペクトルQPIの新しい設計を紹介しました。 この手法では、ディープラーニングを使用して、広帯域の回折光学ネットワークを作成し、単一のスナップショット内でさまざまなスペクトルバンドでの量子位相画像の取得を可能にします。光学ネットワークは複数の空間的に構造化された誘電性回折層を使用し、それぞれに数十万の透過型回折特性を最適化してディープラーニングを行います。 製造された回折層を組み合わせた後、光学ネットワークはオールオプティカルな位相から強度への変換器として機能します。これにより、マルチスペクトルQPIの信号を出力面の予め決められた空間位置に光学的にルーティングし、モノクローム焦点面配列が生成された強度分布を測定し、予め決められた波長での入力オブジェクトの位相プロファイルを抽出します。 この光学ネットワークは、ディープラーニングを通じて入力オブジェクトのマルチスペクトル位相情報を最適化し、それを出力視野において、各目標スペクトルバンドに対応するオブジェクトの位相情報を空間的に符号化した独自の強度分布に変換します。 QPIは、主に2つの主要なコンポーネントで構成されています。1つはイメージングフロントエンドで、必要な位相情報を光学干渉法によって強度レベルに変換し、デジタルイメージセンサを使用して記録する役割を担っています。2つ目はデジタル処理のバックエンドタスクで、これらの信号に基づいて定量的な位相画像の必要な画像処理と再構築を行います。 システムの正確性をテストするために、研究者たちはこれまでに見たことのない新しいタイプのオブジェクトのイメージング能力を検証しました。この研究は、さまざまなアプリケーションに適した、汎用のマルチスペクトル量子位相イメージャーであることを示しています。
「Amazon SageMaker Pipelinesを使用した機械学習ワークフローの構築のためのベストプラクティスとデザインパターン」
この投稿では、SageMakerパイプラインの価値を最大化し、開発体験をシームレスにするためのベストプラクティスをいくつか紹介しますまた、SageMakerパイプラインを構築する際の一般的なデザインシナリオとパターンについても説明し、それらに対処するための例も提供します
「OpenAI WhisperとHugging Chat APIを使用したビデオの要約」
イントロダクション 建築家ルートヴィヒ・ミース・ファン・デル・ローエが有名になったように、「少ないことがより多い」ということは、要約の意味です。要約は、膨大なテキストコンテンツを簡潔で関連性のある要素にまとめるための重要なツールであり、現代の情報消費スピードに適したものです。テキストアプリケーションでは、要約は情報の検索を支援し、意思決定をサポートします。Generative AI(OpenAI GPT-3ベースのモデルなど)の統合により、テキストから重要な要素を抽出し、ソースの本質を保持したまま意味のある要約を生成するというプロセスが革新されました。興味深いことに、Generative AIの機能は、テキストにとどまらず、ビデオ要約にも広がっています。これには、ビデオから重要なシーン、対話、概念を抽出し、コンテンツの要約を作成することが含まれます。ビデオ要約は、短い要約ビデオを生成したり、ビデオコンテンツの分析を行ったり、ビデオのキーセクションを強調表示したり、ビデオのテキスト要約を作成するなど、さまざまな方法で実現できます。 Open AI Whisper APIは、自動音声認識技術を活用して話された言語を書かれたテキストに変換することで、テキストの要約の正確さと効率性を向上させます。一方、Hugging Face Chat APIは、GPT-3などの最先端の言語モデルを提供します。 学習目標 この記事では、以下のことを学びます: ビデオ要約の技術について学ぶ ビデオ要約の応用について理解する Open AI Whisperモデルのアーキテクチャを探索する Open AI WhisperとHugging Chat APIを使用してビデオテキスト要約を実装する方法を学ぶ…
「Anthropicは、AIチャットボットプラットフォームのClaudeの有料サブスクリプションを導入します」
会話型AI産業において画期的な瞬間となり、人工知能のリーディング企業であるAnthropicが、最先端のチャットボットに有料のサブスクリプションプラン(Claude Pro)を導入しましたこの動向は、AIチャットボットセクターの変化する景色を浮き彫りにし、企業がデジタル提供物の価値を評価する方法についての洞察を提供します提供する旅程[…]
「Declarai、FastAPI、およびStreamlitを使用したLLMチャットアプリケーション— パート2 🚀」
前回のVoAGI記事(リンク🔗)の人気を受けて、LLMチャットアプリケーションの展開について詳しく説明しました皆様からのフィードバックを参考に、この第二部ではさらに高度な内容を紹介します
ユーロトリップの最適化:遺伝的アルゴリズムとGoogle Maps APIによる巡回セールスマン問題の解決
「ユーロトリップ」などの映画を観た後のあの感じを思い出してくださいキャラクターたちが一生の冒険を通じて絵のようなヨーロッパの都市を素早く駆け抜ける様子は魅力的ですしかし、現実は即座に…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.