Learn more about Search Results Gin - Page 8
- You may be interested
- 5つの複雑なSQL問題を解決する:トリッキ...
- 「OpenAIアシスタントAPIを使用してPDFと...
- 「アナログとデジタル:省エネシステムで...
- GoogleのプロジェクトOpen Se Curaをご紹...
- 「アニマ・アナンドクマールとともにAIを...
- このAIニュースレターは、あなたが必要と...
- 次元性の祝福?!(パート1)
- 「ゼロ冗長最適化(ZeRO):Pythonによる...
- 中国の研究者がCogVLMを紹介:パワフルな...
- 「AIが起業の創造的プロセスをどのように...
- 「オッペンハイマーからジェネラティブAI...
- デプロイ可能な機械学習パイプラインの構築
- 「データサイエンスプロジェクトを変革す...
- AIとハリウッドのストライキ – つな...
- GPT-1からGPT-4まで:OpenAIの進化する言...
Hugging Face TransformersとAWS Inferentiaを使用して、BERT推論を高速化する
ノートブック:sagemaker/18_inferentia_inference BERTとTransformersの採用はますます広がっています。Transformerベースのモデルは、自然言語処理だけでなく、コンピュータビジョン、音声、時系列でも最先端のパフォーマンスを達成しています。💬 🖼 🎤 ⏳ 企業は、大規模なワークロードのためにトランスフォーマーモデルを使用するため、実験および研究フェーズから本番フェーズにゆっくりと移行しています。ただし、デフォルトでは、BERTとその仲間は、従来の機械学習アルゴリズムと比較して、比較的遅く、大きく、複雑なモデルです。TransformersとBERTの高速化は、将来的に解決すべき興味深い課題となるでしょう。 AWSはこの課題を解決するために、最適化された推論ワークロード向けに設計されたカスタムマシンラーニングチップであるAWS Inferentiaを開発しました。AWSは、AWS Inferentiaが「現行世代のGPUベースのAmazon EC2インスタンスと比較して、推論ごとのコストを最大80%低減し、スループットを最大2.3倍高める」と述べています。 AWS Inferentiaインスタンスの真の価値は、各デバイスに搭載された複数のNeuronコアを通じて実現されます。Neuronコアは、AWS Inferentia内部のカスタムアクセラレータです。各Inferentiaチップには4つのNeuronコアが搭載されています。これにより、高スループットのために各コアに1つのモデルをロードするか、低レイテンシのためにすべてのコアに1つのモデルをロードすることができます。 チュートリアル このエンドツーエンドのチュートリアルでは、Hugging Face Transformers、Amazon SageMaker、およびAWS Inferentiaを使用して、テキスト分類のBERT推論を高速化する方法を学びます。 ノートブックはこちらでご覧いただけます:sagemaker/18_inferentia_inference 以下の内容を学びます: 1. Hugging Face TransformerをAWS Neuronに変換する 2.…
Hugging FaceでのDecision Transformersの紹介 🤗
🤗 Hugging Faceでは、ディープ強化学習の研究者や愛好家向けのエコシステムに貢献しています。最近では、Stable-Baselines3などのディープRLフレームワークを統合しました。 そして、今日は喜んでお知らせします。オフライン強化学習手法であるDecision Transformerを🤗 transformersライブラリとHugging Face Hubに統合しました。ディープRLの分野でアクセシビリティを向上させるための興味深い計画があり、これからの数週間や数ヶ月でそれを共有できることを楽しみにしています。 オフライン強化学習とは何ですか? Decision Transformerの紹介 🤗 TransformersでDecision Transformerを使用する まとめ 次は何ですか? 参考文献 オフライン強化学習とは何ですか? ディープ強化学習(RL)は、意思決定エージェントを構築するためのフレームワークです。これらのエージェントは、試行錯誤を通じて環境との相互作用を通じて最適な行動(ポリシー)を学び、報酬を受け取ることでユニークなフィードバックを得ることを目指します。 エージェントの目標は、累積報酬であるリターンを最大化することです。なぜなら、RLは報酬の仮説に基づいているからです:すべての目標は、期待累積報酬を最大化することとして記述できるからです。 ディープ強化学習エージェントは、バッチの経験を使用して学習します。問題は、どのようにしてそれを収集するかです: オンラインとオフラインの設定での強化学習の比較、この投稿からの図 オンライン強化学習では、エージェントは直接データを収集します:環境との相互作用によってバッチの経験を収集します。その後、この経験を即座に(または一部のリプレイバッファを介して)使用して学習します(ポリシーを更新します)。 しかし、これはエージェントを実際の世界で直接トレーニングするか、シミュレータを持っている必要があることを意味します。もしそれがなければ、環境の複雑な現実をどのように反映させるか(環境での複雑な現実を反映させる方法は?)という非常に複雑な問題、高価な問題、そして安全性の問題があります。なぜなら、シミュレータに欠陥があれば、競争上の優位性を提供する場合はエージェントがそれを悪用する可能性があるからです。…
Habana LabsとHugging Faceが提携し、Transformerモデルのトレーニングを加速化する
2022年4月12日、カリフォルニア州サンタクララとサンフランシスコ 深層学習によって駆動されるトランスフォーマーモデルは、自然言語処理、コンピュータビジョン、音声など、さまざまな機械学習タスクで最先端のパフォーマンスを発揮します。しかし、大規模なトレーニングは多くの計算能力を必要とするため、全体のプロセスが不必要に長く、複雑で、高コストになることがあります。 今日、高効率な専用のディープラーニングプロセッサを提供するパイオニアであるHabana® Labsと、トランスフォーマーモデルの開発元であるHugging Faceは、優れた品質のトランスフォーマーモデルのトレーニングをより簡単かつ迅速にするために協力しています。HabanaのSynapseAIソフトウェアスイートとHugging Face Optimumオープンソースライブラリの統合により、データサイエンティストや機械学習エンジニアはわずか数行のコードでHabanaプロセッサ上でトランスフォーマーモデルのトレーニングジョブを加速し、生産性を向上させながらトレーニングコストを削減することができます。 AmazonのEC2 DL1インスタンスとSupermicroのX12 Gaudi AI Training Serverを駆動するHabana Gaudiトレーニングソリューションは、同等のトレーニングソリューションに比べて最大40%低い価格/パフォーマンスを提供し、より少ない費用でより多くのトレーニングを実現します。Gaudiプロセッサごとに10の100ギガビットイーサネットポートを統合することにより、システムのスケーリングを容易かつ費用効果的に1から数千のGaudiに拡張することができます。HabanaのSynapseAI®は、Gaudiのパフォーマンスと使いやすさに最適化され、TensorFlowとPyTorchのフレームワークをサポートし、コンピュータビジョンと自然言語処理のアプリケーションに特化しています。 GitHubで60,000以上のスター、30,000以上のモデル、毎月数百万の訪問数を誇るHugging Faceは、オープンソースソフトウェアの歴史で最も急成長しているプロジェクトの一つであり、機械学習コミュニティの頼れる場所です。 Hugging Faceのハードウェアパートナープログラムにより、Gaudiの高度なディープラーニングハードウェアと究極のトランスフォーマーツールセットが提供されます。このパートナーシップにより、Habana Gaudiトレーニングトランスフォーマーモデルライブラリの急速な拡大が可能となり、自然言語処理、コンピュータビジョン、音声など、さまざまな顧客のユースケースにGaudiの効率性と使いやすさをもたらします。 「Gaudiトレーニングプラットフォームの効率性、使いやすさ、スケーラビリティの恩恵を受けるトランスフォーマーモデルの需要の増大に対応するために、Hugging Faceとその多くのオープンソース開発者とパートナーシップを結ぶことを楽しみにしています」とHabana Labsのソフトウェア製品マネージメント責任者であるSree Ganesanは述べています。 「Habana…
教育のためのHugging Faceをご紹介します 🤗
機械学習がソフトウェア開発の圧倒的な割合を占めること、非技術的な人々がますますAIシステムに触れることを考えると、AIの主な課題の1つは従業員のスキルを適応・向上させることです。また、AIの倫理的および重要な問題を積極的に考慮するために教育スタッフをサポートする必要があります。 Hugging Faceは機械学習を民主化するオープンソース企業として、世界中のあらゆるバックグラウンドの人々に教育を提供することが重要だと考えています。 私たちは2022年3月にMLデモクラタイゼーションツアーを開始し、Hugging Faceの専門家が16カ国の1000人以上の学生に対して実践的な機械学習クラスを教えました。新しい目標は、「2023年末までに500万人に機械学習を教える」ことです。 このブログ記事では、教育に関する目標達成方法の概要を提供します。 🤗 すべての人のための教育 🗣️ 私たちの目標は、機械学習の可能性と限界を誰にでも理解してもらうことです。これによって、これらの技術の応用が社会全体にとって正味の利益につながる方向へ進化すると信じています。 私たちの既存の取り組みの一部の例: 私たちはMLモデルのさまざまな使い方(要約、テキスト生成、物体検出など)を非常にわかりやすく説明しています。 モデルページのウィジェットを通じて、誰でも直接ブラウザでモデルを試すことができるようにしています。そのため、それを行うための技術的なスキルの必要性を低下させています(例)。 システムで特定された有害なバイアスについてドキュメント化し、警告しています(GPT-2など)。 誰でも1クリックでMLの潜在能力を理解できるオープンソースのMLアプリを作成するためのツールを提供しています。 🤗 初心者向けの教育 🗣️ 私たちは、オンラインコース、実践的なワークショップ、その他の革新的な技術を提供することで、機械学習エンジニアになるためのハードルを下げたいと考えています。 私たちは自然言語処理(NLP)やその他のドメインについての無料コースを提供しています(近日中に)。これらのコースでは、Hugging Faceエコシステムの無料ツールやライブラリを使用して学ぶことができます。このコースの最終目標は、(ほぼ)どんな機械学習の問題にもTransformerを適用する方法を学ぶことです! 私たちはDeep Reinforcement Learningについての無料コースを提供しています。このコースでは、理論と実践でDeep…
KiliとHuggingFace AutoTrainを使用した意見分類
イントロダクション ユーザーのニーズを理解することは、ユーザーに関連するビジネスにおいて重要です。しかし、それには多くの労力と分析が必要であり、非常に高価です。ならば、Machine Learningを活用しませんか?Auto MLを使用することでコーディングを大幅に削減できます。 この記事では、HuggingFace AutoTrainとKiliを活用して、テキスト分類のためのアクティブラーニングパイプラインを構築します。Kiliは、品質の高いトレーニングデータ作成を通じて、データ中心のアプローチを強力にサポートするプラットフォームです。協力的なデータ注釈ツールとAPIを提供し、信頼性のあるデータセット構築とモデルトレーニングの素早い反復を可能にします。アクティブラーニングとは、データセットにラベル付けされたデータを追加し、モデルを反復的に再トレーニングするプロセスです。そのため、終わりのない作業であり、人間がデータにラベルを付ける必要があります。 この記事の具体的なユースケースとして、Google PlayストアのVoAGIのユーザーレビューを使用してパイプラインを構築します。その後、構築したパイプラインでレビューをカテゴリ分類します。最後に、分類されたレビューに感情分析を適用します。その結果を分析することで、ユーザーのニーズと満足度を理解することが容易になります。 HuggingFaceを使用したAutoTrain 自動化されたMachine Learningは、Machine Learningパイプラインの自動化を指す用語です。データクリーニング、モデル選択、ハイパーパラメータの最適化も含まれます。🤗 transformersを使用して自動的にハイパーパラメータの検索を行うことができます。ハイパーパラメータの最適化は困難で時間のかかるプロセスです。 transformersや他の強力なAPIを使用してパイプラインを自分自身で構築することもできますが、AutoTrainを完全に自動化することも可能です。AutoTrainは、transformers、datasets、inference-apiなどの多くの強力なAPIを基に構築されています。 データのクリーニング、モデルの選択、ハイパーパラメータの最適化のステップは、すべてAutoTrainで完全に自動化されています。このフレームワークをフルに活用することで、特定のタスクに対してプロダクションレディのSOTAトランスフォーマーモデルを構築することができます。現在、AutoTrainはバイナリとマルチラベルのテキスト分類、トークン分類、抽出型質問応答、テキスト要約、テキストスコアリングをサポートしています。また、英語、ドイツ語、フランス語、スペイン語、フィンランド語、スウェーデン語、ヒンディー語、オランダ語など、多くの言語もサポートしています。AutoTrainでサポートされていない言語の場合、カスタムモデルとカスタムトークナイザを使用することも可能です。 Kili Kiliは、データ中心のビジネス向けのエンドツーエンドのAIトレーニングプラットフォームです。Kiliは、最適化されたラベリング機能と品質管理ツールを提供し、データを管理するための便利な手段を提供します。画像、ビデオ、テキスト、PDF、音声データを素早く注釈付けできます。GraphQLとPythonの強力なAPIも備えており、データ管理を容易にします。 オンラインまたはオンプレミスで利用可能であり、コンピュータビジョンやNLP、OCRにおいてモダンなMachine Learning技術を実現することができます。テキスト分類、固有表現認識(NER)、関係抽出などのNLP / OCRタスクをサポートしています。また、オブジェクト検出、画像転写、ビデオ分類、セマンティックセグメンテーションなどのコンピュータビジョンタスクもサポートしています。 Kiliは商用ツールですが、Kiliのツールを試すために無料のデベロッパーアカウントを作成することもできます。料金については、価格ページから詳細を確認できます。 プロジェクト モバイルアプリケーションについての洞察を得るために、レビューの分類と感情分析の例を取り上げます。…
Hugging Faceハブへ、fastaiさんを歓迎します
ニューラルネットを再びクールじゃなくする…そして共有する Deep Learningのアクセシビリティを高めるために、fast.aiエコシステムは他に類を見ない成果を上げてきました。Hugging Faceの使命は、優れた機械学習を民主化することです。機械学習へのアクセスの排他性、事前学習済みモデルを過去のものとし、この素晴らしい領域をさらに推進しましょう。 fastaiは、PyTorchとPythonを活用して、テキスト、画像、表形式のデータに対して最新の出力を備えた高速かつ正確なニューラルネットワークをトレーニングするためのハイレベルなコンポーネントを提供するオープンソースのDeep Learningライブラリです。ただし、fast.aiは単なるライブラリ以上のものです。それはオープンソースの貢献者とニューラルネットワークの学習に取り組む人々の繁栄するエコシステムに成長しました。いくつかの例として、彼らの書籍やコースをチェックしてみてください。fast.aiのDiscordやフォーラムに参加してください。彼らのコミュニティに参加することで、確実に学びが得られます! これら全ての理由から(この記事の執筆者はfast.aiのコースのおかげで自分の旅をスタートさせました)、私たちは誇りを持ってお知らせします。fastaiのプラクティショナーは、Pythonの一行でモデルをHugging Face Hubに共有・アップロードすることができるようになりました。 👉 この記事では、fastaiとHubの統合について紹介します。さらに、このチュートリアルをColabノートブックとして開くこともできます。 fast.aiコミュニティ、特にJeremy Howard、Wayde Gilliam、Zach Muellerにフィードバックをいただいたことに感謝します 🤗。このブログは、fastaiドキュメントのHugging Face Hubセクションに強く触発されています。 Hubに共有する理由 Hubは、モデル、データセット、MLデモを共有・探索できる中央プラットフォームです。最も広範なオープンソースのモデル、データセット、デモのコレクションを提供しています。 Hubで共有することで、あなたのfastaiモデルの影響力を広げ、他の人がダウンロードして探索できるようにします。また、fastaiモデルを転移学習に利用することもできます。他の誰かのモデルをタスクの基礎として読み込むことができます。 誰でも、hf.co/modelsのウェブページでfastaiライブラリをフィルタリングすることで、Hubの全てのfastaiモデルにアクセスできます。以下の画像を参照してください。 広範なコミュニティへの無料モデルホスティングと露出に加えて、Hubにはgitに基づいたバージョン管理(大容量ファイルの場合はgit-lfs)や、発見性と再現性のためのモデルカードも組み込まれています。Hubのナビゲーションについての詳細は、この紹介を参照してください。 Hugging…
GraphcoreとHugging Faceが、IPU対応の新しいトランスフォーマーのラインアップを発表
GraphcoreとHugging Faceは、Hugging Face Optimumにおいて利用可能な機械学習のモダリティとタスクの範囲を大幅に拡張しました。Hugging Face Optimumは、Transformersのパフォーマンス最適化のためのオープンソースライブラリです。開発者は、GraphcoreのIPUで最高のパフォーマンスを提供するように最適化された幅広いHugging Face Transformerモデルに簡単にアクセスできるようになりました。 Optimum Graphcoreの発売後間もなく提供されたBERT Transformerモデルを含む、開発者は現在、自然言語処理(NLP)、音声、コンピュータビジョンをカバーする10のモデルにアクセスできます。これらのモデルには、IPUの設定ファイルと、事前学習および微調整済みのモデルの重みを使用するための準備が整っています。 新しいOptimumモデル コンピュータビジョン ViT(Vision Transformer)は、主要なコンポーネントとしてTransformerメカニズムを使用した画像認識の画期的な手法です。画像がViTに入力されると、言語システムで単語が処理されるのと同様に、画像は小さなパッチに分割されます。各パッチはTransformer(埋め込み)によってエンコードされ、個別に処理することができます。 NLP GPT-2(Generative Pre-trained Transformer 2)は、非常に大規模な英語のコーパスで自己教師付きの形式で事前学習されたテキスト生成Transformerモデルです。これは、テキストのラベリングを行わずに、公開されているデータを多く使用することができるため、自動的なプロセスでテキストから入力とラベルを生成することによって事前学習されました。より具体的には、文の次の単語を推測して文を生成するようにトレーニングされています。 RoBERTa(Robustly optimized BERT approach)は、自己教師付きの形式で大規模な英語のコーパスで事前学習されたTransformerモデルです(GPT-2と同様)。より具体的には、RoBERTaはマスクされた言語モデリング(MLM)の目的で事前学習されています。文を取り、モデルは入力の15%の単語をランダムにマスクし、全体のマスクされた文をモデルを通して実行し、マスクされた単語を予測する必要があります。RoBERTaはマスクされた言語モデリングに使用することができますが、主に下流タスクで微調整することを意図しています。…
IntelとHugging Faceがパートナーシップを結び、機械学習ハードウェアアクセラレーションを民主化する
Hugging Faceのミッションは、優れた機械学習を民主化し、産業や社会に対するそのポジティブな影響を最大化することです。私たちはTransformerモデルの進歩だけでなく、その採用を簡素化するためにも努力しています。 本日、Intelが正式に私たちのハードウェアパートナープログラムに参加したことをお知らせいたします。Optimumオープンソースライブラリのおかげで、IntelとHugging FaceはTransformerをトレーニング、微調整、予測するための最新のハードウェアアクセラレーションを共同で開発します。 Transformerモデルはますます大きく複雑になっており、検索やチャットボットなどのレイテンシーに敏感なアプリケーションにおいて、生産上の課題を引き起こすことがあります。残念ながら、レイテンシーの最適化は機械学習(ML)の専門家にとって長年の難問でした。基盤となるフレームワークやハードウェアプラットフォームの深い知識があっても、どのツマミや機能を活用するかを見極めるために多くの試行錯誤が必要です。 Intelは、Intel Xeon Scalable CPUプラットフォームと幅広いハードウェア最適化AIソフトウェアツール、フレームワーク、ライブラリを備えた、AIの加速化に完全な基盤を提供します。そのため、Hugging FaceとIntelが力を合わせて、Intelプラットフォーム上での最高のパフォーマンス、スケーラビリティ、生産性を実現するための強力なモデル最適化ツールの開発に取り組むことは理にかなっています。 「Intel XeonハードウェアとIntel AIソフトウェアの最新のイノベーションをTransformersコミュニティにもたらすため、オープンソースの統合と統合された開発者体験を通じてHugging Faceと協力することにワクワクしています。」と、Intel副社長兼AIおよび分析のゼネラルマネージャーであるWei Li氏は述べています。 最近の数ヶ月間、IntelとHugging FaceはTransformerワークロードのスケーリングに取り組んできました。推論(パート1、パート2)の詳細なチューニングガイドとベンチマークを公開し、最新のIntel Xeon Ice Lake CPU上でDistilBERTの単桁ミリ秒レイテンシーを実現しました。トレーニングの側では、GPUよりも40%優れた価格性能を提供するHabana Gaudiアクセラレータのサポートを追加しました。 次の自然なステップは、この作業を拡大してMLコミュニティと共有することでした。それがOptimum Intelオープンソースライブラリの登場です!それをより詳しく見てみましょう。…
Hugging Face Optimumを使用して、TransformersをONNXに変換する
ハグフェース・ハブには、毎日何百ものトランスフォーマーの実験とモデルがアップロードされています。これらの実験を行う機械学習エンジニアや学生は、PyTorch、TensorFlow/Keras、その他のさまざまなフレームワークを使用しています。これらのモデルはすでに数千の企業によって使用され、AIを搭載した製品の基盤となっています。 トランスフォーマーのモデルを本番環境で展開する場合、まずは特殊なランタイムとハードウェア上で読み込み、最適化、実行できるシリアライズされた形式にエクスポートすることをお勧めします。 このガイドでは、以下のことについて学びます: ONNXとは何か Hugging Face Optimumとは何か どのトランスフォーマーアーキテクチャがサポートされているか トランスフォーマーモデル(BERT)をONNXに変換する方法 次は何か さあ、始めましょう! 🚀 モデルを最大限の効率で実行するために最適化することに興味がある場合は、🤗 Optimumライブラリをチェックしてください。 5. 次は何か トランスフォーマーモデルをONNXに正常に変換したので、最適化および量子化ツールの全セットが使用できるようになりました。次のステップとしては、以下のことが考えられます: Optimumとトランスフォーマーパイプラインを使用した高速推論にONNXモデルを使用する モデルに静的量子化を適用して、レイテンシを約3倍改善する トレーニングにONNXランタイムを使用する ONNXモデルをTensorRTに変換してGPUパフォーマンスを向上させる … モデルを最大限の効率で実行するために最適化することに興味がある場合は、🤗 Optimumライブラリをチェックしてください。…
TF Servingを使用してHugging FaceでTensorFlow Visionモデルを展開する
過去数ヶ月間、Hugging Faceチームと外部の貢献者は、TransformersにさまざまなビジョンモデルをTensorFlowで追加しました。このリストは包括的に拡大しており、ビジョントランスフォーマー、マスク付きオートエンコーダー、RegNet、ConvNeXtなど、最先端の事前学習モデルがすでに含まれています! TensorFlowモデルを展開する際には、さまざまな選択肢があります。使用ケースに応じて、モデルをエンドポイントとして公開するか、アプリケーション自体にパッケージ化するかを選択できます。TensorFlowには、これらの異なるシナリオに対応するツールが用意されています。 この投稿では、TensorFlow Serving(TF Serving)を使用してローカルでビジョントランスフォーマーモデル(画像分類用)を展開する方法を紹介します。これにより、開発者はモデルをRESTエンドポイントまたはgRPCエンドポイントとして公開できます。さらに、TF Servingはモデルのウォームアップ、サーバーサイドバッチ処理など、多くの展開固有の機能を提供しています。 この投稿全体で示される完全な動作するコードを取得するには、冒頭に示されているColabノートブックを参照してください。 🤗 TransformersのすべてのTensorFlowモデルには、save_pretrained()というメソッドがあります。このメソッドを使用すると、モデルの重みをh5形式およびスタンドアロンのSavedModel形式でシリアライズできます。TF Servingでは、モデルをSavedModel形式で提供する必要があります。そこで、まずビジョントランスフォーマーモデルをロードして保存します。 from transformers import TFViTForImageClassification temp_model_dir = "vit" ckpt = "google/vit-base-patch16-224" model = TFViTForImageClassification.from_pretrained(ckpt)…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.