Learn more about Search Results Data Science Blogathon - Page 8

「大規模言語モデルの微調整に関する包括的なガイド」

導入 過去数年間、自然言語処理(NLP)の領域は大きな変革を遂げてきました。それは大規模な言語モデルの登場によるものです。これらの高度なモデルにより、言語翻訳から感情分析、さらには知的なチャットボットの作成まで、幅広いアプリケーションの可能性が開かれました。 しかし、これらのモデルの特筆すべき点はその汎用性です。特定のタスクやドメインに対応するためにこれらを微調整することは、その真の可能性を引き出し、性能を向上させるための標準的な手法となりました。この包括的なガイドでは、基礎から高度な内容まで、大規模な言語モデルの微調整の世界について詳しく掘り下げます。 学習目標 大規模な言語モデルを特定のタスクに適応させるための微調整の概念と重要性を理解する。 マルチタスキング、指示微調整、パラメータ効率的な微調整など、高度な微調整技術を学ぶ。 微調整された言語モデルが産業界を革新する実際の応用例について実践的な知識を得る。 大規模な言語モデルの微調整のステップバイステップのプロセスを学ぶ。 効率的な微調整メカニズムの実装を行う。 標準的な微調整と指示微調整の違いを理解する。 この記事はData Science Blogathonの一部として公開されました。 事前学習済み言語モデルの理解 事前学習済み言語モデルは、通常インターネットから収集された膨大なテキストデータに対して訓練された大規模なニューラルネットワークです。訓練プロセスは、与えられた文やシーケンス内の欠損している単語やトークンを予測することで、モデルに文法、文脈、意味の深い理解を与えます。これらのモデルは数十億の文を処理することで、言語の微妙なニュアンスを把握することができます。 人気のある事前学習済み言語モデルの例には、BERT(Bidirectional Encoder Representations from Transformers)、GPT-3(Generative Pre-trained Transformer 3)、RoBERTa(A Robustly…

「UNETアーキテクチャの包括的なガイド | 画像セグメンテーションのマスタリング」

イントロダクション コンピュータビジョンという興奮する分野では、画像には多くの秘密と情報が含まれており、アイテムを区別し強調することが重要です。画像セグメンテーションは、画像を意味のある領域やオブジェクトに分割するプロセスであり、医療画像から自動運転や物体認識までさまざまなアプリケーションで必要です。正確で自動的なセグメンテーションは長い間課題であり、従来の手法では精度と効率が不足することがよくありました。そこで登場するのがUNETアーキテクチャです。UNETは画像セグメンテーションを革新した知能的な手法であり、そのシンプルな設計と独創的な技術により、より正確で堅牢なセグメンテーション結果を実現しました。コンピュータビジョンのエキサイティングな分野に初めて足を踏み入れる方でも、セグメンテーションの能力を向上させたい経験豊富なプラクティショナーでも、この詳細なブログ記事はUNETの複雑さを解き明かし、そのアーキテクチャ、コンポーネント、有用性を完全に理解することができます。 この記事はData Science Blogathonの一部として公開されました。 畳み込みニューラルネットワークの理解 CNNはコンピュータビジョンのタスクで頻繁に使用されるディープラーニングモデルであり、画像分類、物体認識、画像セグメンテーションなどに非常に役立ちます。CNNは主に画像から関連する情報を学習し抽出するため、視覚データ分析に非常に有用です。 CNNの重要なコンポーネント 畳み込み層: CNNは学習可能なフィルタ(カーネル)の集合で構成されており、入力画像または特徴マップに畳み込まれます。各フィルタは要素ごとの乗算と合計を適用し、特定のパターンやローカルな特徴を強調した特徴マップを生成します。これらのフィルタはエッジ、コーナー、テクスチャなど、多くの視覚要素を捉えることができます。 プーリング層: 畳み込み層によって生成された特徴マップをプーリング層を使用してダウンサンプリングします。プーリングは特徴マップの空間的な次元を削減しながら、最も重要な情報を保持し、後続の層の計算量を減らし、モデルを入力の変動に対してより抵抗力のあるものにします。最も一般的なプーリング操作は、与えられた近傍内の最大値を取るマックスプーリングです。 活性化関数: 活性化関数を使用して、CNNモデルに非線形性を導入します。畳み込み層やプーリング層の出力に要素ごとに適用し、ネットワークが複雑な関連性を理解し非線形の決定を行うことができるようにします。勾配消失問題を解決するためのシンプルさと効率性から、ReLU(Rectified Linear Unit)活性化関数がCNNでよく使用されます。 全結合層: 全結合層、または密結合層とも呼ばれるものは、取得した特徴を使用して最終的な分類または回帰操作を行います。これにより、1つの層のすべてのニューロンが次の層のすべてのニューロンに接続され、ネットワークは前の層の組み合わせ入力に基づいてグローバルな表現を学習し、高レベルの判断を行うことができます。 ネットワークは、低レベルの特徴を捉えるために畳み込み層のスタックから始まり、その後プーリング層が続きます。より深い畳み込み層はネットワークが進化するにつれてより高レベルの特徴を学習します。最後に、1つまたは複数の全結合層を使用して分類または回帰操作を行います。 全結合ネットワークの必要性 従来のCNNは通常、単一のラベルが入力画像全体に割り当てられる画像分類のジョブに適しています。一方、従来のCNNアーキテクチャは、各ピクセルをさまざまなクラスや領域に分類するセマンティックセグメンテーションのようなより詳細なタスクには問題があります。ここでFully Convolutional Networks(FCN)が活躍します。 セグメンテーションタスクにおける従来のCNNアーキテクチャの制約…

「BI-LSTMを用いた次の単語予測のマスタリング:包括的なガイド」

はじめに 次の単語を特定することは、次の単語の予測、または言語モデリングとしても知られています。自然言語処理のベンチマークタスクの一つは、言語モデリングです。基本的な形式では、特定の単語の後に続く単語を、それらに基づいて最も起こりやすいものとして選ぶことを意味します。言語モデリングは、さまざまな分野でさまざまな応用があります。 学習目標 統計分析、機械学習、データサイエンスで使用される多くのモデルの基本的なアイデアと原則を認識する。 回帰、分類、クラスタリングなどの予測モデルを作成し、データに基づいて正確な予測とタイプを生成する方法を学ぶ。 過剰適合と適合不足の原則を理解し、精度、適合率、再現率などの指標を使用してモデルのパフォーマンスを評価する方法を学ぶ。 データの前処理とモデリングに関連する特性を特定する方法を学ぶ。 グリッドサーチと交差検証を使用して、ハイパーパラメータを調整し、モデルを最適化する方法を学ぶ。 この記事はData Science Blogathonの一部として公開されました。 言語モデリングの応用 以下は言語モデリングの注目すべき応用例です。 モバイルキーボードのテキスト推奨 スマートフォンのキーボードには、モバイルキーボードのテキスト推奨、予測テキスト、またはオートサジェストと呼ばれる機能があります。入力すると、単語やフレーズを提案します。これにより、タイピングがより速く、エラーが少なくなり、より正確で文脈に適した推奨が行われます。 また読む:コンテンツベースのレコメンデーションシステムの構築 Google検索の自動補完 Googleなどの検索エンジンを使用して何かを検索するたびに、多くのアイデアが表示され、フレーズを追加すると、推奨がより良く、現在の検索に関連性が高くなります。それはどのように実現されるのでしょうか? 自然言語処理(NLP)技術が可能にします。ここでは、自然言語処理(NLP)を使用して、双方向LSTM(長短期記憶)モデルを利用して、文の残りの単語を予測する予測モデルを作成します。 さらに詳しくはこちら:LSTMとは? 長短期記憶の紹介 必要なライブラリとパッケージのインポート 次の単語の予測モデルを作成するために、双方向LSTMを使用するために必要なライブラリとパッケージをインポートするのが最も良いでしょう。一般的に必要なライブラリの一部を以下に示します: import…

「LangchainとOpenAIを使用したGoogleドキュメントのためのチャットボット」

イントロダクション この記事では、OpenAIとLangchainを使用してGoogleドキュメント用のチャットボットを作成します。では、なぜ最初にこれを行う必要があるのでしょうか?Googleドキュメントの内容をOpenAIにコピー&ペーストするのは手間がかかります。OpenAIには文字トークンの制限があり、特定の情報しか追加できません。したがって、スケールで実行するか、プログラムで実行する場合は、ライブラリのヘルプが必要です。そこで、Langchainが登場します。LangchainをGoogleドライブとOpenAIと接続することで、製品ドキュメント、研究ドキュメント、または会社が使用している内部の知識ベースなど、ドキュメントを要約し関連する質問をすることでビジネスへの影響を創出することができます。 学習目標 Langchainを使用してGoogleドキュメントのコンテンツを取得する方法を学ぶことができます。 GoogleドキュメントのコンテンツをOpenAI LLMと統合する方法を学ぶことができます。 ドキュメントのコンテンツを要約し、関連する質問をする方法を学ぶことができます。 ドキュメントに基づいて質問に答えるチャットボットを作成する方法を学ぶことができます。 この記事は、Data Science Blogathonの一部として公開されました。 ドキュメントの読み込み 始める前に、Googleドライブにドキュメントを設定する必要があります。ここで重要なのは、Langchainが提供するドキュメントローダーであるGoogleDriveLoaderです。これを使用して、このクラスを初期化し、ドキュメントIDのリストを渡すことができます。 from langchain.document_loaders import GoogleDriveLoader import os loader = GoogleDriveLoader(document_ids=["あなたのドキュメントID"], credentials_path="credentials.jsonファイルへのパス") docs…

「会話型AIのLLM:よりスマートなチャットボットとアシスタントの構築」

イントロダクション 言語モデルは、技術と人間が自然な会話を行う魅力的なConversational AIの世界で中心的な役割を果たしています。最近、Large Language Models(LLMs)という注目すべきブレークスルーがありました。OpenAIの印象的なGPT-3のように、LLMsは人間のようなテキストを理解し生成するという非凡な能力を示しています。これらの素晴らしいモデルは、特によりスマートなチャットボットやバーチャルアシスタントの作成において、ゲームチェンジャーとなりました。 このブログでは、LLMsがConversational AIにどのように貢献しているかを探求し、その潜在能力を示すための理解しやすいコード例を提供します。さあ、LLMsが仮想的なインタラクションをより魅力的で直感的にする方法を見てみましょう。 学習目標 Large Language Models(LLMs)の概念と、Conversational AIの能力向上における重要性を理解する。 LLMsがチャットボットやバーチャルアシスタントが人間のようなテキストを理解し生成することを可能にする方法を学ぶ。 プロンプトエンジニアリングの役割を探求し、LLMベースのチャットボットの動作をガイドする。 伝統的な方法に比べてLLMsの優位性を認識し、チャットボットの応答を改善する。 LLMsを活用したConversational AIの実用的な応用を発見する。 この記事はData Science Blogathonの一部として公開されました。 Conversational AIの理解 Conversational AIは、人工知能の革新的な分野であり、自然で人間らしい方法で人間の言語を理解し応答する技術の開発に焦点を当てています。自然言語処理や機械学習などの高度な技術を使用して、Conversational…

「テキスト分析の未来を明らかにする BERTを使用したトレンディなトピックモデリング」

イントロダクション 機械学習と自然言語処理において非常に効果的な手法は、トピックモデリングです。テキストのコーパスは、文書のコレクションの例です。この手法は、そこに現れる抽象的な主題を見つけることを目的としています。この手法は、テキストのコーパスの潜在的な構造を明らかにし、即座には見えないテーマやパターンを明らかにします。 数千ものツイートなどの大量のドキュメントの内容を分析するために、トピックモデリングアルゴリズムはテキストのパターンを見つけるために統計的な技術に依存しています。これらのアルゴリズムは、ドキュメント内の頻度や単語の共起を調べた後、いくつかの主題に論文を分類します。その結果、内容はより整理されて理解しやすくなり、データの潜在的なテーマやパターンを認識しやすくなります。 潜在ディリクレ割り当て(LDA)、潜在的意味解析、非負値行列因子分解などがトピックモデリングのいくつかの従来の手法です。しかし、このブログ記事では、トピックモデリングにBERTを使用しています。 詳細情報:トピックモデリングのための潜在ディリクレ割り当て(LDA)を使用する 学習目標 以下は、BERTを使用したトピックモデリングのワークショップの学習目標のリストです: トピックモデリングの基礎とNLPでの使用方法を理解する BERTの基礎とドキュメントの埋め込みの作成方法を理解する BERTモデルにテキストデータを準備するために前処理を行う [CLS]トークンを使用してBERTの出力からドキュメントの埋め込みを抽出する クラスタリング手法(K-meansなど)を使用して関連する資料をグループ化し、潜在的な主題を見つける 生成されたトピックの品質を評価するために適切な指標を使用する この学習目標の助けを借りて、参加者はBERTを使用したトピックモデリングの実践的な経験を得ることができます。この知識を活用して、彼らは大規模なテキストデータの中から隠れたテーマを分析し、抽出する準備をすることができます。 この記事はData Science Blogathonの一環として公開されました。 データの読み込み これはオーストラリア放送協会のコンテンツであり、Kaggleで8年以上にわたり利用可能になっています。2つの重要な列が含まれています:publish_date:記事の公開日(yyyyMMdd形式)と、headline_textの英語訳。これがトピックモデルが使用する知識です。 import pandas as pd #…

CatBoost カテゴリカルデータを用いたモデル構築のための解決策

イントロダクション 熱心な学習者がデータサイエンスや機械学習を学びたい場合、ブーステッドファミリーを学ぶべきです。ブーステッドファミリーから派生した多くのアルゴリズムがあります。例えば、AdaBoost、Gradient Boosting、XGBoostなどです。ブーステッドファミリーのアルゴリズムの1つはCatBoostアルゴリズムです。CatBoostは機械学習アルゴリズムであり、Categorical Boostingを表しています。これはYandexによって開発されたオープンソースのライブラリです。PythonとRの両方で使用することができます。CatBoostはデータセット内のカテゴリ変数と非常にうまく動作します。他のブースティングアルゴリズムと同様に、CatBoostも分類ラベルを予測するために背後で複数の決定木、つまり木のアンサンブルを作成します。これは勾配ブースティングに基づいています。 また読む:CatBoost:カテゴリカル(CAT)データを自動的に処理するための機械学習ライブラリ 学習目標 ブーステッドアルゴリズムの概念とデータサイエンスおよび機械学習における重要性を理解する。 カテゴリ変数の処理を担当するブーステッドファミリーの一員であるCatBoostアルゴリズム、その起源、および役割を探索する。 CatBoostの主な特徴、カテゴリ変数の処理、勾配ブースティング、順序ブースティング、および正則化技術の理解。 CatBoostの利点、カテゴリ変数の堅牢な処理と優れた予測パフォーマンスについての洞察。 回帰および分類タスクにおいてPythonでCatBoostを実装し、モデルパラメータを探索し、テストデータ上で予測を行う方法を学ぶ。 この記事はData Science Blogathonの一部として公開されました。 CatBoostの重要な特徴 カテゴリ変数の処理: CatBoostはカテゴリ変数を含むデータセットの処理に優れています。さまざまな方法を使用して、カテゴリ変数を数値表現に変換することで、自動的にカテゴリ変数を処理します。これにはターゲット統計、ワンホットエンコーディング、または両方の組み合わせが含まれます。この機能により、手動のカテゴリ変数の前処理の要件を省略することで、時間と労力を節約できます。 勾配ブースティング: CatBoostは、効果的な予測モデルを作成するために、複数の弱学習器(決定木)を組み合わせるアンサンブル技術である勾配ブースティングを使用します。前の木によって引き起こされる誤りを修正するために訓練され、指示された木を追加することで、異なる可能性のある分割構成を最小化する勾配ブースティングは、イテレーションごとにツリーを作成する方法です。この反復的なアプローチにより、モデルの予測能力が徐々に向上します。 順序ブースティング: CatBoostは、「順序ブースティング」と呼ばれる新しい技術を提案して、カテゴリ変数を効果的に処理します。ツリーを構築する際に、カテゴリ変数の最適な分割点を特定するために、カテゴリ変数のパーミュテーション駆動の事前ソートという技術を使用します。この方法により、CatBoostはすべての潜在的な分割構成を考慮し、予測を改善し、過学習を低減することができます。 正則化: CatBoostでは、過学習を減らし、汎化性能を向上させるために正則化技術が使用されます。葉の値に対するL2正則化を特徴とし、過剰な葉の値を防ぐために損失関数にペナルティ項が追加されます。また、カテゴリデータのエンコーディング時の過学習を防ぐために、「順序ターゲットエンコーディング」という先端的な手法も使用します。 CatBoostの利点…

「スパースなデータセットの扱い方に関する包括的ガイド」

はじめに ほとんどがnull値で構成されたデータセットを見たことがありますか?もしそうなら、あなたは一人ではありません。機械学習の中で最も頻繁に起こる問題の一つが、スパースなデータセットです。不適切な調査、欠損値のあるセンサーデータ、または欠損単語のあるテキストなど、いくつかの要因がこれらの存在を引き起こすことがあります。 スパースなデータセットで訓練された機械学習モデルは、比較的低い精度で結果を出力することがあります。これは、機械学習アルゴリズムがすべてのデータが利用可能であるという前提で動作するためです。欠損値がある場合、アルゴリズムは特徴間の相関関係を正しく判断できない可能性があります。欠損値のない大規模なデータセットで訓練すると、モデルの精度が向上します。したがって、スパースなデータセットにはランダムな値ではなく、おおよそ正しい値を埋めるために、特別な注意が必要です。 このガイドでは、スパースなデータセットの定義、理由、および取り扱いの技術について説明します。 学習目標 スパースなデータセットの理解とデータ分析におけるその影響を総合的に把握する。 欠損値を含むスパースなデータセットの処理に関するさまざまな技術、イミュータ、および高度な手法を探求する。 スパースなデータセット内に潜む隠れた洞察を明らかにするために、探索的データ分析(EDA)の重要性を発見する。 実際のデータセットとコード例を組み合わせたPythonを使用したスパースなデータセットの取り扱いに対する実用的なソリューションを実装する。 この記事はData Science Blogathonの一部として公開されました。 スパースなデータセットとは何ですか? 多くの欠損値を含むデータセットは、スパースなデータセットと言われます。欠損値の割合だけでデータセットをスパースと定義する具体的な閾値や固定の割合はありません。ただし、欠損値の割合が高い(通常50%以上)データセットは比較的スパースと見なされることがあります。このような大量の欠損値は、データ分析と機械学習において課題を引き起こす可能性があります。 例 オンライン小売業者からの消費者の購買データを含むデータセットがあると想像してみてください。データセットには2000行(消費者を表す)と10列(製品カテゴリ、購入金額、クライアントのデモグラフィックなどを表す)があるとします。 この例では、データセットのエントリの40%が欠損していると仮定しましょう。つまり、各クライアントごとに10の属性のうち約4つに欠損値があるということです。顧客がこれらの値を入力しなかった可能性があるか、データ収集に問題があったかもしれません。 明確な基準はありませんが、大量の欠損値(40%)があることで、このデータセットを非常にスパースと分類することができます。このような大量の欠損データは、分析とモデリングの信頼性と精度に影響を及ぼす可能性があります。 スパースなデータセットが課題となる理由 多くの欠損値が発生するため、スパースなデータセットはデータ分析とモデリングにいくつかの困難をもたらします。スパースなデータセットを取り扱う際に以下のような要素が課題となります: 洞察の不足:スパースなデータセットでは多くのデータが欠損しているため、モデリングに役立つ意味のある洞察が失われます。 バイアスのある結果:モデルがバイアスのある結果を出力すると、問題が生じます。スパースなデータセットでは、欠損データのためにモデルが特定の特徴カテゴリに依存する場合があります。 モデルの精度への大きな影響:スパースなデータセットは、機械学習モデルの精度に悪影響を与えることがあります。欠損値のある場合、モデルは誤ったパターンを学習する可能性があります。 スパースなデータセットの考慮事項…

変分オートエンコーダーの概要

はじめに 変分オートエンコーダ(VAE)は、特定のデータセットの基になる確率分布を捉え、新たなサンプルを生成するために明示的に設計された生成モデルです。VAEはエンコーダ-デコーダ構造を持つアーキテクチャを使用します。エンコーダは入力データを潜在形式に変換し、デコーダはこの潜在表現に基づいて元のデータを再構成することを目指します。VAEは元のデータと再構成データの相違を最小化するようにプログラムされており、基になるデータ分布を理解し、同じ分布に従う新たなサンプルを生成することができます。 VAEの注目すべき利点の一つは、トレーニングデータに似た新しいデータサンプルを生成する能力です。VAEの潜在空間は連続的であるため、デコーダはトレーニングデータポイントの間を滑らかに補完する新しいデータ点を生成することができます。VAEは密度推定やテキスト生成など、さまざまなドメインで応用されています。 この記事はData Science Blogathonの一環として公開されました。 変分オートエンコーダのアーキテクチャ VAEは通常、エンコーダ接続とデコーダ接続の2つの主要なコンポーネントから構成されています。エンコーダネットワークは入力データを低次元の「秘密のコード」と呼ばれる空間に変換します。 エンコーダネットワークの実装には、完全に接続されたネットワークや畳み込みニューラルネットワークなど、さまざまなニューラルネットワークのトポロジーが検討されることがあります。選択するアーキテクチャはデータの特性に基づいています。エンコーダネットワークは、サンプリングと潜在コードの生成に必要なガウス分布の平均値や分散などの重要なパラメータを生成します。 同様に、研究者はさまざまなタイプのニューラルネットワークを使用してデコーダネットワークを構築し、その目的は提供された潜在コードから元のデータを再構成することです。 VAEのアーキテクチャの例:fen VAEは、入力データを潜在コードにマッピングするエンコーダネットワークと、潜在コードを再構成データに戻す逆操作を行うデコーダネットワークから構成されています。このトレーニングプロセスを経て、VAEはデータの基本的な特性を捉えた最適化された潜在表現を学習し、正確な再構成を可能にします。 正則化に関する直感 アーキテクチャの側面に加えて、研究者は潜在コードに正則化を適用し、VAEの重要な要素にします。この正則化により、トレーニングデータを単に記憶するのではなく、潜在コードのスムーズな分布を促進し、過学習を防ぎます。 正則化は、トレーニングデータポイント間を滑らかに補完する新しいデータサンプルの生成に役立つだけでなく、トレーニングデータに似た新しいデータを生成するVAEの能力にも貢献します。さらに、この正則化はデコーダネットワークが入力データを完璧に再構成することを防ぎ、多様なデータサンプルを生成するためのより一般的なデータ表現の学習を促進します。 数学的には、VAEでは正則化を損失関数にクロスエントロピー項を組み込むことで表現します。エンコーダネットワークは、ガウス分布のパラメータ(平均や対数分散など)を生成し、潜在コードのサンプリングに使用します。VAEの損失関数には、学習された潜在変数の分布と事前分布(正規分布)のKLダイバージェンスの計算が含まれます。研究者はKLダイバージェンス項を組み込んで、潜在変数が事前分布に類似した分布を持つように促します。 KLダイバージェンスの式は次の通りです: KL(q(z∣x)∣∣p(z)) = E[log q(z∣x) − log p(z)]…

「Chroma DBガイド | 生成AI LLMのためのベクトルストア」

イントロダクション GPTやPaLMなどの生成型の大規模言語モデルは、大量のデータで訓練されます。これらのモデルはデータセットからそのままのテキストを取得するのではなく、コンピュータはテキストを理解することができないため、数値のみを理解できます。埋め込みは、テキストを数値形式で表現したものです。大規模言語モデルへの情報の出入りは、すべてこれらの埋め込みを介して行われます。これらの埋め込みに直接アクセスすることは時間がかかります。そのため、効率的なストレージと埋め込みの取得のために特別に設計されたベクトルデータベースと呼ばれるものが存在します。このガイドでは、広く使用されているオープンソースのベクトルストア/データベースであるChroma DBに焦点を当てます。 学習目標 ChromaDBと埋め込みモデルを使用した埋め込みの生成 Chromaベクトルストア内でのコレクションの作成 ドキュメント、画像、および埋め込みのコレクションへの保存 データの削除と更新、コレクションの名前変更などのコレクション操作の実行 最後に、関連情報を抽出するためのクエリの実行 この記事はData Science Blogathonの一部として公開されました。 埋め込みの短い紹介 埋め込みまたはベクトル埋め込みは、データ(テキスト、画像、音声、ビデオなど)を数値形式で表現する方法です。正確には、n次元空間(数値ベクトル)内の数値の形式でデータを表現する方法です。この方法により、埋め込みを使用して似たデータをクラスタ化することができます。これらの入力を受け取り、ベクトルに変換するモデルが存在します。その一つの例はWord2Vecです。Googleが開発した人気のある埋め込みモデルで、単語をベクトルに変換します(ベクトルはn次元の点です)。すべての大規模言語モデルは、それぞれの埋め込みモデルを持ち、それらのLLMのための埋め込みを作成します。 これらの埋め込みは何に使用されるのですか? 単語をベクトルに変換することの利点は、それらを比較できることです。コンピュータは単語をそのまま比較することはできませんが、数値の形式で与えれば、つまりベクトル埋め込みとして与えれば比較できます。似たような埋め込みを持つ単語のクラスタを作成することができます。たとえば、”King”、”Queen”、”Prince”、”Princess”という単語は他の単語と関連しているため、同じクラスタに表示されます。 このように、埋め込みを使用することで、与えられた単語に類似した単語を取得することができます。これを文に組み込むこともできます。文を入力し、提供されたデータから関連する文を取得します。これはセマンティックサーチ、文の類似性、異常検出、チャットボットなど、さまざまなユースケースの基盤です。PDFやドキュメントからの質問応答を実行するために構築したチャットボットでは、この埋め込みの概念を利用しています。すべての生成型の大規模言語モデルは、与えられたクエリに類似した内容を取得するためにこのアプローチを使用します。 ベクトルストアとその必要性 先述のように、埋め込みは数値形式で表現されたデータの表現です。通常、非構造化データをn次元空間で表現します。では、これらをどこに保存するのでしょうか?伝統的なRDMS(リレーショナルデータベース管理システム)では、これらのベクトル埋め込みを保存することはできません。ここでベクトルストア/ベクトルデータベースが登場します。ベクトルデータベースは、ベクトル埋め込みを効率的に保存および取得するために設計されています。さまざまなベクトルストアが存在し、それらはサポートする埋め込みモデルや類似ベクトルを取得するために使用する検索アルゴリズムの種類によって異なります。 なぜそれが必要なのでしょうか?それは、必要なデータへの高速なアクセスを提供するためです。PDFに基づいたチャットボットを考えてみましょう。ユーザーがクエリを入力すると、まずはPDFから関連コンテンツを取得し、この情報をチャットボットにフィードする必要があります。そして、チャットボットはこのクエリに関連する情報を取得し、ユーザーに適切な回答を提供するためにこの情報を使用します。では、ユーザーのクエリに関連するPDFから関連コンテンツをどのように取得するのでしょうか?答えは簡単な類似度検索です。 データがベクトル埋め込みで表現されると、データの異なる部分間で類似性を見つけ、特定の埋め込みに類似したデータを抽出することができます。クエリはまず埋め込みモデルによって埋め込みに変換され、その後ベクトルストアはこのベクトル埋め込みを受け取り、データベース内に保存されている他の埋め込みとの類似性検索(検索アルゴリズムを介して)を実行し、関連するデータをすべて取得します。これらの関連するベクトル埋め込みは、最終的な回答を生成するチャットボットで使用される大規模言語モデルに渡されます。 Chroma DBとは何ですか? Chromaは、Chromaという会社が提供するベクトルストア/ベクトルDBです。Chroma…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us