Learn more about Search Results 16 - Page 8
- You may be interested
- データランドスケープの進化
- タイムズネット:時系列予測の最新の進歩
- IDEにAIを統合する
- SIGGRAPH特別講演:NVIDIAのCEOがLAショー...
- 「ロボット義足の足首は、自然な運動と安...
- 「火星のためのモルフォボット:カリフォ...
- 「ChatGPTのコードインタプリタをデータサ...
- StableSRをご紹介します:事前トレーニン...
- 「世界は誰も知らない60年前のコードに依...
- ネットワークの強化:異常検知のためのML...
- 「フォワードパスとバックプロパゲーショ...
- このAI論文では、「ステーブルシグネチャ...
- ChatGPTによるカスタムMatplotlibウェルロ...
- 最高のAIジョブコース(2023年)
- 「生成タスクを分類タスクに変換する」
特定のデータ処理タスクを効率的に解決するための3つのPython操作
あなたに届く生データはほぼ常に希望された形式または必要とされる形式とは異なりますあなたのワークフローは指定された形式に生データを取り込んで始まり、…
「RustコードのSIMDアクセラレーションのための9つのルール(パート1)」
「SIMDを使用してRustコードを高速化するための9つの基本ルールを探索してくださいcoresimd、最適化テクニック、およびパフォーマンスを7倍に向上させる方法を学びましょう」
「ゼロから始めるLoRAの実装」
「LoRA(ローラ)は、既存の言語モデルを微調整するための効率的で軽量な方法を提供する、Low-Rank AdaptationまたはLow-Rank Adaptorsの頭字語ですこれには、BERTのようなマスクされた言語モデルも含まれます...」
ミストラルAIは、MoE 8x7Bリリースによる言語モデルの画期的な進歩を発表します
パリに拠点を置くスタートアップMistral AIは、MoE 8x7Bという言語モデルを発表しました。Mistral LLMは、各々が70億のパラメータを持つ8人の専門家からなる、サイズダウンされたGPT-4としてしばしば比較されます。特筆すべきは、各トークンの推論には8人の専門家のうち2人のみが使用され、効率的で効果的な処理手法を示していることです。 このモデルは、混合専門家(MoE)アーキテクチャを活用して、素晴らしいパフォーマンスと効率性を実現しています。これにより、従来のモデルと比べてより効率的で最適なパフォーマンスが得られます。研究者たちは、MoE 8x7Bが、テキスト生成、理解、コーディングやSEO最適化など高度な処理を必要とするタスクを含むさまざまな側面で、Llama2-70BやQwen-72Bなどの以前のモデルよりも優れたパフォーマンスを発揮することを強調しています。 これにより、AIコミュニティの間で多くの話題を呼んでいます。著名なAIコンサルタントであり、Machine & Deep Learning Israelコミュニティの創設者である人物は、Mistralがこのような発表を行っていることを称え、これを業界内で特徴的なものと評価しています。オープンソースAIの提唱者であるジェイ・スキャンブラー氏は、このリリースの異例性について言及しました。彼は、これがMistralによる故意の戦略であり、AIコミュニティからの注目と興味を引くためのものである可能性があると述べ、重要な話題を成功裏に生み出したと指摘しています。 MistralのAI分野における旅は、欧州史上最大と報じられている1億1800万ドルのシードラウンドという記録的な一歩で始まりました。同社は、9月には最初の大規模な言語AIモデルであるMistral 7Bのローンチにより、さらなる認知度を得ました。 MoE 8x7Bモデルは、各々が70億のパラメータを持つ8人の専門家を搭載しており、GPT-4の16人の専門家と1人あたり1660億のパラメータからの削減を表しています。推定1.8兆パラメータのGPT-4に比べ、推定総モデルサイズは420億パラメータです。また、MoE 8x7Bは言語問題に対するより深い理解を持っており、機械翻訳やチャットボットのインタラクション、情報検索の向上につながっています。 MoEアーキテクチャは、より効率的なリソース配分を可能にし、処理時間を短縮し、計算コストを削減します。Mistral AIのMoE 8x7Bは、言語モデルの開発において重要な進展を示すものです。その優れたパフォーマンス、効率性、柔軟性は、さまざまな産業やアプリケーションにおいて莫大なポテンシャルを持っています。AIが進化し続ける中、MoE 8x7Bのようなモデルは、デジタル専門知識やコンテンツ戦略を向上させたい企業や開発者にとって不可欠なツールとなることが予想されています。 結論として、Mistral AIのMoE 8x7Bのリリースは、技術的な洗練と非伝統的なマーケティング戦略を組み合わせた画期的な言語モデルを導入しました。研究者たちは、AIコミュニティがMistralのアーキテクチャを詳しく調査・評価していく中で、この先進的な言語モデルの効果と利用方法を楽しみにしています。MoE 8x7Bの機能は、教育、医療、科学的発見など、さまざまな分野における研究開発の新たな道を開く可能性があります。
Amazon SageMaker JumpStartを使用してLLMと対話するためのWeb UIを作成します
ChatGPTの発売および生成AIの人気の上昇は、AWS上で新しい製品やサービスを作成するためにこの技術をどのように利用できるかについての好奇心を持つ顧客たちの想像力を捉えていますこれにより、より対話的なエンタープライズチャットボットなどの製品やサービスを作成する方法を紹介しますこの記事では、Web UIを作成する方法について説明します
費用効率の高いGPT NeoXおよびPythiaモデルの訓練における節約と正確性:AWS Trainiumの活用
大規模言語モデル(またはLLMs)は、日々の会話のトピックとなっていますその迅速な採用は、1億人のユーザーに到達するまでに必要な時間の量で明らかですこれが「Facebookでの4.5年」からわずかな「2ヶ月でのChatGPT」の史上最低になったことが証拠です生成型事前学習トランスフォーマー(GPT)は因果自己回帰の更新を使用します[...]
コンセプトスライダー:LoRAアダプタを使用した拡散モデルの正確な制御
彼らの能力のおかげで、テキストから画像への変換モデルは芸術コミュニティで非常に人気がありますただし、現在のモデル、最先端のフレームワークを含めて、生成された画像の視覚的な概念や属性をコントロールするのは難しく、満足のいく結果を得ることができませんほとんどのモデルはテキストのプロンプトにのみ依存しており、継続的な属性の制御に課題があります[…]
ハイプに乗ろう! ベイエリアでのAIイベント
サンフランシスコは、世界の人工知能(AI)の首都として誇り高く立っていますAIの領域に没頭するなら、今がこの都市にいるべき最適な時ですこの現象の重要な部分は、AIに焦点を当てたイベントの急増によりもたらされています過去数年間は、ベイエリアのイベント主催者にとって挑戦が続いてきました
2024年にフォローすべきトップ10のデータサイエンスYouTubeチャンネル
イントロダクション データサイエンスは、プログラミング、統計学、ドメインの専門知識を組み合わせてデータから洞察力と知識を引き出す急速に成長している分野です。オンラインコース、教科書、ブログなど、データサイエンスを学ぶための多くのリソースが利用可能です。この記事では、無料のデータサイエンス学習を提供するYouTubeチャンネルに焦点を当てます。これらのデータサイエンスYouTubeチャンネルは、キャリアのスタートや既存の知識の補完に最適な方法です。 コンテンツの品質、人気、カバーされるトピックの幅に基づいて、トップ10のYouTubeチャンネルを選びました。これらのチャンネルは、データサイエンスの概念やツールに関する講義、チュートリアル、デモを提供しています。 さあ、無料のデータサイエンス学習のためのトップ10のYouTubeチャンネルのリストを見ていきましょう! 3Blue1Brown @3blue1brown | 5.62Mの購読者 | 150本の動画 複雑な数学の問題が理解できないとお困りですか?3Blue1Brownがおすすめです!Grant Sandersonによって作成されたこのYouTubeチャンネルは、難解な概念を理解しやすく、エンターテイニングな方法で説明するためにアニメーションを使用しています。 5.6百万人以上の購読者と3.75億回の視聴数を誇る3Blue1Brownは、数学を学びたい人やディープラーニングのアルゴリズムの仕組みを理解したい人にとっての頼りになるリソースとなっています。 3Blue1Brownは、乾燥した講義や混乱する方程式ではなく、アニメーションを使って数学を生き生きとさせます。Grantの魅力的なビデオは、線型代数や微積分などの複雑なトピックを明確で追いやすい方法で説明します。彼はまた、物理学やコンピュータ科学の他の分野にも深入りし、3Blue1Brownはこれらの分野に興味がある人にとっても幅広いリソースとなっています。 数学の宿題に苦しむ学生や、あなたの周りの世界についてもっと学びたい人にとって、3Blue1Brownは素晴らしい始まりの場所です。チャンネルにアクセスして、Grantの素晴らしいビデオをチェックしてみませんか?数学を学ぶことがどれだけ楽しいかに驚くかもしれません! このデータサイエンスのYouTubeチャンネルを見るには、ここをクリックしてください。 Joma Tech @jomakaze | 2.27Mの購読者 | 98本の動画 データサイエンスのプロフェッショナルで、キャリアパスのナビゲーションや業界のトレンドに洞察を求めていますか?Joma…
「2024年のデータサイエンティストにとってのトップ26のデータサイエンスツール」
イントロダクション データサイエンスの分野は急速に進化しており、最新かつ最もパワフルなツールを活用することで、常に最先端に立つことが求められます。2024年には、プログラミング、ビッグデータ、AI、可視化など、データサイエンティストの業務のさまざまな側面に対応した選択肢が豊富に存在します。この記事では、2024年のデータサイエンスの領域を形作っているトップ26のデータサイエンスツールについて探っていきます。 データサイエンティストのためのトップ26のツール プログラミング言語によるツール 1. Python Pythonは、そのシンプルさ、多様性、豊富なライブラリエコシステムのため、データサイエンティストにとって必須の言語です。 主な特徴: 豊富なライブラリサポート(NumPy、Pandas、Scikit-learn)。 広範なコミュニティと強力な開発者サポート。 2. R Rは統計プログラミング言語であり、データ分析と可視化に使用され、頑健な統計パッケージで知られています。 主な特徴: 包括的な統計ライブラリ。 優れたデータ可視化機能。 3. Jupyter Notebook Jupyter Notebookは対話型のコンピューティング環境であり、データサイエンティストがライブコード、数式、可視化、ナラティブテキストを含むドキュメントを作成し共有することができます。 主な特徴: 複数の言語(Python、R、Julia)のサポート。 インタラクティブで使いやすい。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.