Learn more about Search Results 比較 - Page 8
- You may be interested
- ビデオオブジェクトセグメンテーションの...
- 個別のデータサイエンスのロードマップを...
- スマートデバイスのサイバーセキュリティ...
- オープンLLMリーダーボード:DROPディープ...
- 「8月7日〜13日のトップ投稿:ChatGPTを忘...
- ゼロトラストから安全なアクセスへ:クラ...
- AI倫理の役割:革新と社会的責任のバランス
- OpenAIのWhisper APIによる転写と翻訳
- スタンフォード研究所がFlashAttention-2...
- 「ジェネレーティブAIの企業導入」
- FAAが米国で最大の無人航空システムを承認
- 安定した拡散 コミュニティのAI
- このAI論文では、リーマン幾何学を通じて...
- 最高のAIジョブコース(2023年)
- ジェネラティブ人工知能を解明:拡散モデ...
指数平滑移動平均の直感的な説明
時間系列分析において、前の値を考慮に入れて、配列の傾向方向を理解する必要がしばしばあります配列内の次の値の近似を行うことができます...
アップルの研究者がDeepPCRを公開:通常は順次処理される操作を並列化してニューラルネットワークの推論とトレーニングの速度を向上させる新しい機械学習アルゴリズム
人工知能や深層学習の進展により、さまざまな革新が実現されています。テキストや画像の合成、分割、分類などの複雑なタスクは、ニューラルネットワークの助けを借りて成功裏に処理されています。しかし、ニューラルネットワークのトレーニングにはコンピューティングの要求があり、適切な結果を得るまでには数日または数週間かかる場合があります。事前に訓練されたモデルの推論も、複雑なデザインの場合には遅くなる場合があります。 並列化技術は深層ニューラルネットワークのトレーニングと推論を高速化します。これらの手法は広く使用されていますが、ニューラルネットワークの一部の操作はまだ順次に実行されています。拡散モデルは、ノイズ低減ステージの続けざまに出力を生成し、前方および後方パスは層ごとに行われます。ステップ数が増えると、これらのプロセスの順次実行は計算上の負担となり、計算のボトルネックにつながる可能性があります。 この問題に対処するために、Appleの研究チームはDeepPCRという独自のアルゴリズムを導入し、ニューラルネットワークのトレーニングと推論を高速化しようとしました。DeepPCRは、一連のLステップを一定の方程式の答えとして認識することによって機能します。チームは、この解を取得するためにParallel Cyclic Reduction (PCR) アルゴリズムを使用しました。DeepPCRの主な利点は、順次プロセスの計算コストをO(L)からO(log2 L)に削減できることです。特にLの値が大きい場合には、この複雑性の削減により速度が向上します。 チームは、DeepPCRの複雑性の低減と高速化の条件を検証するために実験を行いました。DeepPCRを適用して、多層パーセプトロンの前方パスと後方パスを並列化することで、前方パスでは30倍、後方パスでは200倍の高速化を達成しました。 チームはまた、DeepPCRの適応性を示すために、1024層を持つResNetのトレーニングに使用しました。DeepPCRのおかげで、トレーニングは最大7倍速く完了することができます。この技術は、拡散モデルの生成フェーズで使用され、シーケンシャルアプローチよりも11倍高速な生成を行います。 チームは、主な貢献を以下のようにまとめています。 ニューラルネットワークのトレーニングと推論の順次プロセスを並列化するための革新的なアプローチであるDeepPCRを紹介しました。その主な特徴は、列長を表すLをO(L)からO(log2 L)に低減する能力です。 DeepPCRは、多層パーセプトロン(MLP)の前方パスと後方パスを並列化するために使用されました。この技術のパフォーマンスに関する詳細な分析が行われ、基本的な設計パラメータを考慮しながら、高パフォーマンスの領域を特定しました。スピード、解の正確性、メモリ使用量のトレードオフも調査しています。 DeepPCRは、MNISTおよびMNIST、CIFAR-10、CelebAのデータセットで訓練された拡散モデルのディープResNetのトレーニングを高速化するために使用されました。DeepPCRは著しく高速化されている一方で、ResNetトレーニングでは7倍高速化し、拡散モデルの生成では11倍高速化し、シーケンシャルな手法と比較可能な結果を生成します。
「RustコードのSIMD高速化のための9つのルール(パート2)」
SIMDを使用してRustコードを高速化するための9つの基本ルールを探求してくださいcoresimdについて学び、最適化技術を学びながらパフォーマンスを7倍に向上させましょう
クライテリオンを使用したRustコンパイラの設定のベンチマーキング
この記事では、まず、人気のある基準箱を使用してベンチマークする方法について説明します次に、コンパイラの設定を横断してベンチマークする方法について追加情報を提供します各組み合わせについて…
カールスルーエ工科大学(KIT)の研究者たちは、深層学習を用いた降水マッピングに取り組み、空間および時間の分解能向上に向けて進化させました
気候変動のため、特に激しい降水イベントがより頻繁に起こると予想されています。洪水や地滑りなどの多くの自然災害は、激しい降水が直接原因です。気候予測に基づいたモデルが頻繁に使用されます。既存の気候モデルは、非常に変動の大きい大気現象を正確に表現する能力を向上させる必要があります。研究者は、平均気温が上昇することにより、激しい降水イベントがさらに増えると予想しています。 カールスルーエ工科大学(KIT)の研究者たちは、人工知能(AI)の力を活用して、グローバル気候モデルによって生成された降水マップの精度を高めました。 研究者は、このモデルでは降水フィールドの時間分解能を1時間から10分に短縮し、空間分解能を32から2キロメートルに増加させたことを強調しています。彼らは、高分解能が将来の激しい局地的な降水イベントとそれに続く自然災害を予測するために必要であると述べています。 この手法は、AIの一形態である生成的対抗ネットワーク(GAN)を応用することを含みます。このGANは、高分解能のレーダー降水データを用いてトレーニングされ、より高い空間および時間分解能で現実的な降水フィールドを学習し模倣することが可能です。 既存のグローバル気候モデルは、降水変動を正確に捉えるために必要な細部の詳細が欠けたグリッドを使用しています。また、高分解能の降水マップを生成するためには、従来のモデルでは計算コストが高く、空間または時間の制約が生じます。 研究者によれば、これが生成的対抗ネットワーク(GAN)を開発する理由であり、高分解能のレーダー降水フィールドを使用してトレーニングされたAIベースの生成的ニューラルネットワークです。この方法では、荒く解像度の低いデータからGANが現実的な降水フィールドを生成し、その時間的な順序を決定する方法を学習します。 三線補間と古典的な畳み込みニューラルネットワークと比較して、生成モデルは解像度依存の極値分布を高い技術力で再構成します。雨量が15ミリリットル毎時を超える場合の高い分数スキルスコア(0.6)と低い相対バイアス(3.35%)が示されました。 研究者によれば、彼らのアプローチはさまざまな可能な降水フィールドのアンサンブルを生成します。これは重要ですが、粗く解像された降水フィールドごとに物理的に可能な高解像度の解決策が多数存在します。 彼らはこの方法でシミュレートされた降水イベントのより高い解像度は、2021年にアール川の洪水を引き起こした気象条件の影響を2度暖かい世界でより良く推定することを可能にすると説明しています。 結論として、このモデルは降水を予測するためのグローバル気候モデルの精度を向上させる解決策を提供します。この進歩はより正確な気候予測に貢献します。変化する気候の中で極端な天候イベントの影響をよりよく理解し、準備するための潜在力を持っています。
ルーシッドドリーマー:インターバルスコアマッチングを介した高品位のテキストから3D生成
最近のテキストから3DジェネレーティブAIフレームワークの進歩は、生成モデルにおける重要な節目を示していますこれらは、数多くの現実世界のシナリオで3Dアセットを作成する新たな可能性を開拓していますデジタル3Dアセットは現在、私たちのデジタル存在において不可欠な場所を占めており、複雑な環境やオブジェクトとの包括的な視覚化や対話を可能にしています
ミストラルAIの最新のエキスパート(MoE)8x7Bモデル
ミストラルAIのMoE 8x7Bを発見しましょうこれはMixture of Experts frameworkを用いた「スケールダウンされたGPT-4」ですこのモデルがどのように印象的な多言語対応能力と効率性を実現しているか、さまざまなタスクで競合モデルを上回るかを学んでください
「AGIに向かって:LLMと基礎モデルが人生の学びの革命で果たす役割」
過去10年間、特にディープラーニングの成功を受けて、人工汎用知能(AGI)の構築の可能性について議論が続いています最終目標は...
『ELS+ Stream Tool』
ELS+は、企業がデータから有益な洞察を抽出し、意思決定を改善し、パフォーマンスを向上させるためのAIパワードアナリティクスツールです
「安定拡散を使用したハイパーリアルな顔を生成する3つの方法」
あなたはベースモデルを使用してイメージを生成する方法を学び、画像の品質を向上するためにStable Diffusion XLモデルにアップグレードする方法、そして高品質の肖像画を生成するためにカスタムモデルを使用する方法を学びました
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.