Learn more about Search Results 提供しています - Page 8

「2024年のデータサイエンティストにとってのトップ26のデータサイエンスツール」

イントロダクション データサイエンスの分野は急速に進化しており、最新かつ最もパワフルなツールを活用することで、常に最先端に立つことが求められます。2024年には、プログラミング、ビッグデータ、AI、可視化など、データサイエンティストの業務のさまざまな側面に対応した選択肢が豊富に存在します。この記事では、2024年のデータサイエンスの領域を形作っているトップ26のデータサイエンスツールについて探っていきます。 データサイエンティストのためのトップ26のツール プログラミング言語によるツール 1. Python Pythonは、そのシンプルさ、多様性、豊富なライブラリエコシステムのため、データサイエンティストにとって必須の言語です。 主な特徴: 豊富なライブラリサポート(NumPy、Pandas、Scikit-learn)。 広範なコミュニティと強力な開発者サポート。 2. R Rは統計プログラミング言語であり、データ分析と可視化に使用され、頑健な統計パッケージで知られています。 主な特徴: 包括的な統計ライブラリ。 優れたデータ可視化機能。 3. Jupyter Notebook Jupyter Notebookは対話型のコンピューティング環境であり、データサイエンティストがライブコード、数式、可視化、ナラティブテキストを含むドキュメントを作成し共有することができます。 主な特徴: 複数の言語(Python、R、Julia)のサポート。 インタラクティブで使いやすい。…

「Mixtral 8x7Bについて知っていること ミストラルの新しいオープンソースLLM」

「ミストラルAIは、オープンソースのLLM(語彙・言語モデル)の領域で限界に挑戦する最も革新的な企業の一つですミストラルの最初のリリースであるミストラル7Bは、市場で最も採用されているオープンソースのLLMsの一つとなりましたA...」

「LLMアプリを作成するための5つのツール」

「経験豊富なMLエンジニアであろうと、新しいLLMデベロッパーであろうと、これらのツールはあなたの生産性を高め、AIプロジェクトの開発と展開を加速させるのに役立ちます」

「ハグフェース上のトップ10大きな言語モデル」

イントロダクション Hugging Faceは、自然言語処理の愛好家や開発者にとって宝庫となり、さまざまなアプリケーションに簡単に統合できる事前学習済み言語モデルの幅広いコレクションを提供しています。Large Language Models(LLM)の世界で、Hugging Faceは頼りになるプラットフォームとして際立っています。この記事では、Hugging Faceで利用可能なトップ10のLLMモデルを紹介し、言語理解と生成の進化する景色に貢献します。 さあ、始めましょう! Mistral-7B-v0.1 Mistral-7B-v0.1は、70億のパラメータを誇る大規模言語モデル(LLM)です。これは事前学習済みの生成テキストモデルとして設計されており、Llama 2 13Bが検証されたドメインで設定したベンチマークを上回ることで知られています。このモデルは、グループ化されたクエリアテンションやスライディングウィンドウアテンションなどの注意機構に特定の選択を行ったトランスフォーマーアーキテクチャに基づいています。Mistral-7B-v0.1は、Byte-fallback BPEトークナイザーも組み込んでいます。 ユースケースとアプリケーション テキスト生成:Mistral-7B-v0.1は、コンテンツ作成、創造的な文章作成、または自動ストーリーテリングなど、高品質のテキスト生成を必要とするアプリケーションに適しています。 自然言語理解:高度なトランスフォーマーアーキテクチャと注意機構を備えたこのモデルは、感情分析やテキスト分類などの自然言語理解を必要とするタスクに適用することができます。 言語翻訳:生成能力と大規模なパラメータサイズを考慮すると、このモデルはニュアンスのある文脈に即した正確な翻訳が重要な言語翻訳タスクで優れたパフォーマンスを発揮するかもしれません。 研究開発:研究者や開発者は、さまざまな自然言語処理プロジェクトでのさらなる実験や微調整のためにMistral-7B-v0.1をベースモデルとして活用することができます。 このLLMにはこちらでアクセスできます。 Starling-LM-11B-alpha この大規模言語モデル(LLM)は、110億のパラメータを持ち、NurtureAIから生まれました。このモデルは、その基盤としてOpenChat 3.5モデルを利用し、AIのフィードバックからの強化学習(RLAIF)によるfine-tuningを経ています。このアプローチでは、ヒトによってラベル付けされたランキングのデータセットを利用してトレーニングプロセスを誘導します。 ユースケースとアプリケーション Starling-LM-11B-alphaは、マシンとの対話方法を革新する潜在的な大規模言語モデルであり、オープンソースの性質、優れたパフォーマンス、多様な機能を備えており、研究者、開発者、クリエイティブプロフェッショナルにとって貴重なツールです。…

合成データ生成のマスタリング:応用とベストプラクティス

この記事では、合成データ生成技術とそれらのさまざまなアプリケーションでの実装、および遵守すべきベストプラクティスについて説明します

「金融業界におけるAIの進出:自動取引からパーソナライズドバンキングへ」

財界は、人工知能(AI)の出現と統合によって、革命的な変化を目撃していますこの技術は、単なる付加要素ではなく、金融サービスの本質的な構造を再構築するための核となる要素です超人的なスピードで取引を実行する自動化取引アルゴリズムから個別の顧客に合わせたパーソナライズされたバンキング体験まで、AIによる金融業界の侵略が進行しています... 金融業界におけるAIの進出:自動化取引からパーソナライズされたバンキングへ Read More »

メタAIは、オープンで創造的なAIモデルを使って倫理的に建設するために、パープルラマをコミュニティの支援として発表しました

<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-12-at-12.34.25-AM-1024×710.png”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-12-at-12.34.25-AM-150×150.png”/><p>データの増加、モデルサイズ、自己回帰言語モデリングのための計算能力の向上により、対話型AIエージェントは過去数年で驚くべき進化を遂げました。チャットボットは、自然言語処理、推論、ツールの習熟度など、多くの有用なスキルで知られる大規模な言語モデル(LLM)を使用することがよくあります。</p><p>これらの新しいアプリケーションは、潜在的な危険を軽減するために徹底的なテストと慎重な展開が必要です。したがって、生成AIによって動作する製品には、ポリシーに違反する高リスクなコンテンツの生成を防ぐための保護策を実装することが推奨されます。さらに、アドバーサリアルな入力やモデルのジェイルブレイクの試みを防ぐためにも、これらはLlama 2 Responsible Use Guideなどのリソースで確認できます。</p><p>オンラインのコンテンツを管理するためのツールを探している場合、Perspective API1、OpenAI Content Moderation API2、およびAzure Content Safety API3はすべて良い出発点です。ただし、これらのオンラインモデレーション技術は、入出力のガードレールとして使用した場合にはいくつかの理由で失敗します。最初の問題は、ユーザーとAIエージェントの危険性を区別する方法が現在存在しないことです。結局のところ、ユーザーは情報や援助を求めますが、AIエージェントはそれを提供する可能性が高いです。さらに、すべてのツールは設定されたポリシーを強制するため、ユーザーはツールを新しいポリシーに合わせて変更できません。第三に、個々のユースケースに合わせて微調整することは不可能です。最後に、すべての既存のツールは控えめな伝統的なトランスフォーマーモデルに基づいています。より強力なLLMと比較すると、これは彼らのポテンシャルを大幅に制限します。</p><p>新しいメタ研究は、会話型AIエージェントのプロンプトとレスポンスの潜在的な危険を分類するための入出力保護ツールを明らかにします。これにより、LLMを基にしたモデレーションが可能となり、この分野でのニーズを満たします。</p><p>彼らの分類ベースのデータは、ロジスティック回帰に基づく入出力保護モデルであるLlama Guardをファインチューニングするために使用されます。 Llama Guardは関連する分類ベースをモデルの入力として受け取り、指示義務を適用します。ユーザーは、ゼロショットまたはフューショットのプロンプティングを使用してモデルの入力を個別のユーズケースに適した分類ベースでカスタマイズすることができます。推論時間では、複数のファインチューニングされた分類ベースの中から選択し、適切にLlama Guardを適用することができます。</p><p>彼らは、LLMの出力(AIモデルからの応答)とヒューマンリクエスト(LLMへの入力)のラベリングに異なるガイドラインを提案しています。したがって、ユーザーとエージェントの責任の意味差をLlama Guardが捉えることができます。 LLMモデルがコマンドに従うという能力を利用することで、彼らはたった1つのモデルでこれを実現することができます。</p><p>彼らはまた、Purple Llamaを発表しました。将来的には、これはリソースと評価をまとめたプロジェクトとなり、オープンで創造的なAIモデルを倫理的に構築するためのコミュニティを支援します。サイバーセキュリティと入出力保護ツールおよび評価は、最初のリリースの一部となり、さらに多くのツールが追加されます。</p><p>彼らは業界で初めてのLLMのための包括的なサイバーセキュリティ安全評価を提供しています。これらのガイドラインは、セキュリティの専門家と共同で開発され、業界の推奨事項や基準(CWEやMITRE ATT&CKなど)に基づいています。この最初のリリースでは、ホワイトハウスが責任あるAIの創造を約束した中で、以下のような危険を緩和するのに役立つリソースを提供することを目指しています。</p><ul><li>LLMサイバーセキュリティの脅威を数量化するためのメトリック。</li><li>安全でないコード提案の普及を評価するためのツール。</li><li>LLMをより安全に書き換えることやサイバー攻撃の実行を助けるための手段。</li></ul><p>これらのツールにより、LLMが安全でないAI生成コードを提案する頻度を減らすことによって、サイバー攻撃者へのLLMの有用性が低下すると予想されます。彼らの研究では、LLMが安全でないコードを提案したり、悪意のあるリクエストを受け入れたりする場合に、深刻なサイバーセキュリティの懸念があることがわかっています。 </p><p>LLMへのすべての入力と出力は、Llama…

NexusRaven-V2をご紹介します:13B LLMは、ゼロショット機能呼び出しでGPT-4を凌駕し、ナチュラルランゲージの指示を実行可能なコードに変換する能力を持っています

<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-12-at-12.42.47-AM-1024×623.png”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-12-at-12.42.47-AM-150×150.png”/><p>LLMsは、コード関連のデータセットで微調整することができ、関数呼び出しを含むコードスニペットを生成することができます。これらのモデルは、コンテキストやプロンプトによって提供された入力に基づいて、関数呼び出しを含むコードを提案または生成することができます。言語モデルは、コードに関連するクエリや指示の自然言語理解に使用することができます。開発者は質問や説明を入力し、モデルはそれらを解釈して関連する関数呼び出しやコードセグメントを提供することができます。</p><p>LLMsは、提供されたコンテキストや部分的なコードに基づいて、関数呼び出しを提案したり関連する関数を提案したりすることによって、コード補完を支援することができます。これにより、開発者はより迅速かつ正確にコードを記述することができます。LLMsは、特定のタスクや問題の説明に基づいて、適切なAPIや手順をガイドすることで、開発者がコード内で呼び出すべき適切な関数を見つけるのを支援することができます。LLMsを開発環境に統合することで、開発者に対して関数呼び出し、パラメータのタイプ、または潜在的なエラーに対してリアルタイムのサポートを提供することができます。</p><p>Nexusflowの研究者は、オープンソースのLLMモデル、<strong><a href=”https://www.voagi.com/nexusravenv2-outperforms-gpt4-in-nexusflows-latest-battle.html”>NexusRaven-V2</a></strong>を提案しています。これは自然言語の指示を実行可能なコードに変換してツールを使用することができます。OpenAIアシスタントAPIは、コパイロットとエージェントがソフトウェアツールを使用するための鍵として機能します。NexusRaven-V2は、コパイロットとエージェントのオープンソースモデルを進化させることを目指しています。</p><p>NexusRaven-V2は、ネストや複合関数を使用する人間が生成したユースケースで、関数呼び出しの成功率でGPT-4を最大7%上回っています。NexusRavenはMetaのCodeLlama-13 Bインストラクションにチューニングされた指示です。Nexusflowのパイプラインを使用して、プロプライエタリなLLMを使用せずにオープンコードのコーポラから情報源を提供しています。コミュニティ開発者と企業の両方に対して商業許容です。</p><p>当社の人間によるベンチマークで、NexusRaven-V2は、関数呼び出しの成功率において、最新のGPT-4モデルよりも平均で4%高い成功率を示すことが観察されました。なお、ネストや複合関数呼び出しを必要とする4つの厳しいタスクでは、NexusRaven-V2の方がGPT-4よりも堅牢性が高いと言えます。また、開発者の関数の説明におけるバリエーションを処理する際にも、NexusRaven-V2はGPT-4よりも優れた性能を発揮します。</p><p>チームは、ユーザーがメインストリームのプロプライエタリな関数呼び出しAPIをシームレスにNexusRaven-V2で置き換えることができるオープンソースのユーティリティアーティファクトをリリースしました。また、オンラインデモやコラボノートブックを提供してオンボーディングと統合デモを行っています。彼らは評価ベンチマーク<a href=”https://www.voagi.com/call-all-functions.html”>Nexus-Function-Calling</a>をオープンソース化し、Huggingfaceの<a href=”https://www.voagi.com/create-and-analyze-advanced-machine-learning-models-using-the-sagemaker-canvas-model-leaderboard.html”>リーダーボード</a>を確立しています。このリーダーボードには、さまざまな関数呼び出しのユースケースと難易度をカバーした、実生活で人間が選定した関数呼び出しの例が多数収録されています。</p><p>将来的には、関数呼び出しのLLMは教育現場において、学習者がリアルタイムのサポートを受けながら関数の呼び出し方を正しく学び、プログラミングの概念の理解を促進することができるでしょう。</p>

Windows 12はAIの魔法機能を搭載:テクノロジーの未来への一端

Microsoft(マイクロソフト)は、次世代のWindows OSの大規模なアップデート「ハドソンバレー」と呼ばれるものを熱心に開発しており、Windowsユーザーエクスペリエンスを革新することを期待されています。 “Windows 12″という名前を付けるかどうかについての噂と洞察が既に現れており、その予想される機能、AIの進歩、およびリリースの時期について明らかにしています。 名前のジレンマ 予想が高まる中、名前に対する不確定性が存在します。最初は「Windows 12」と噂されていましたが、最新の情報ではMicrosoftは「Windows 11」というブランド名を使用する可能性があります。この戦略的な決定は、前Windowsリーダーのパノス・パナイの退任後に新しいWindowsリーダーシップから唱えられたユーザーベースのさらなる分断を避けたいという願望に基づいています。 リリースの時期の洞察 インサイダーによると、次期大規模なWindows OSのアップデートは2024年の後半に予定されています。早期のコードとプラットフォームのテストは既にWindows Insider Canary Channelで行われており、愛好家たちに早めの一見を提供しています。リリースは2024年4月にRTMのマイルストーンに到達する予定です。Windows 11のユーザーは、最終バージョンが2024年9月または10月に利用可能になることを期待することができます。 プラットフォームの移行: ニッケルからゲルマニウムへ 過去とは異なり、ハドソンバレーはニッケルプラットフォームのリリースからの転換点となります。新しいWindowsプラットフォームであるゲルマニウムに移行しています。この移行により、より大きな変革が約束されるフルOSのアップグレードが必要になります。これは以前のWindows 11のアップデートで見られた段階的な変更とは対照的です。 システム要件のジレンマ ハドソンバレーの具体的なシステム要件は明らかにされていませんが、除外される可能性についての懸念があります。特にWindows 11の要件の高さにより、大勢のPCが対象外となりました。8GBに移行する可能性がある増加したRAM要件に関する噂が出回っており、公式の確認を待っています。 AI中心の展開 MicrosoftのAI体験への取り組みは、ハドソンバレーの焦点です。今回のリリースでは、Windows…

機械学習によるマルチビューオプティカルイリュージョンの作成:ダイナミックな画像変換のためのゼロショット手法の探索

アナグラムは、異なる角度から見るか、ひっくり返すことで外観が変化するイメージです。これらの魅力的な多角的視覚錯覚を生成するためには、通常、視覚知覚を理解してだます必要があります。しかし、新しいアプローチが登場し、これらの魅力的な多視点光学錯視を簡単かつ効果的に生成する方法を提供しています。 視覚錯覚を作成するためのさまざまなアプローチが存在しますが、ほとんどは人間がイメージをどのように理解するかについての特定の仮定に依存しています。これらの仮定はしばしば、われわれの視覚体験の本質をときどき捉えるだけの複雑なモデルにつながります。ミシガン大学の研究者たちは、新しい解決策を提案しています。人間が物事を見る方法に基づいたモデルを構築するのではなく、テキストからイメージへの拡散モデルを使用します。このモデルは人間の知覚について何も仮定しません。データのみから学習します。 この手法は、フリップや回転時に変形するイメージなど、古典的な錯視を生成するための新しい方法を提案しています。さらに、ピクセルを並び替えると外観が変化する「視覚アナグラム」と呼ばれる新しい錯視の領域にも進出しています。これには、フリップ、回転、ジグソーパズルのような複数の解を持つより複雑な変換も含まれます。この手法は、3つや4つの視点にまで拡張され、魅力的な視覚変換の範囲が広がっています。 この手法が機能するための鍵は、ビューを注意深く選択することです。画像に適用される変換は、ノイズの統計的特性を維持する必要があります。なぜなら、このモデルはランダム、独立、同一分布のガウスノイズを仮定してトレーニングされるからです。 この手法では、画像をさまざまな視点からデノイズするために、拡散モデルを利用して複数のノイズの推定値を生成します。これらの推定値は、逆拡散プロセスの1つのステップを容易にするために組み合わされます。 この論文では、これらの視点の効果を支持する経験的根拠が示され、生成される錯視の品質と柔軟性が紹介されています。 結論として、このシンプルでありながら強力な手法は、魅力的な多視点光学錯覚を作成するための新しい可能性を開拓しています。人間の知覚に対する仮定を避け、拡散モデルの機能を活用することで、視覚変換の魅力的な世界への新たなアプローチを提供しています。フリップ、回転、ポリモーフィックジグソーパズルなど、この方法は、視覚理解を魅了し挑戦する錯視を作り出すための多目的なツールを提供します。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us