Learn more about Search Results 同期 - Page 8
- You may be interested
- Optimum+ONNX Runtime – Hugging Fa...
- データサイエンティストにとって使いやす...
- ロボットは人間と同じく植物を育てること...
- 「AIの民主化:MosaicMLがオープンソースL...
- Langchainを使用してYouTube動画用のChatG...
- ソフトウェアエンジニアリングの未来 生成...
- MONAI 生成モデル:医療画像の進歩に向け...
- 哲学とデータサイエンス−データについて深...
- ベクトルデータベースとは何か、そしてな...
- A/Bテストの際によくある4つの失敗とその...
- 「Azureのコストを最適化するための10の方...
- 「ウェアラブルデータによるコロナ感染予測」
- 「NLPモデルの正規化に関するクイックガイ...
- このAI論文は、医療の視覚的な質問応答に...
- イリノイ大学の研究者は、コードのための...
このAIニュースレターは、あなたが必要とするすべてです#73
今週の会話は、再びOpenAIのDevdayの余波、新製品のリリース、そしてGPTStoreの将来の可能性についての推測で占められていましたすでに10,000以上のGPTが作成されています...
マイクロソフト アジュール:クラウドコンピューティングの未来を支える
Microsoft Azureの現代のビジネスやテクノロジー環境への影響を発見してください主な特徴、利点、使用例を探索しましょう
クロード2 APIの使い方をはじめる
最近、AnthropicのAPIにアクセス権限を取得しましたが、使用方法が簡単でオープンAI APIよりも速いと感心しています
分散システム設計におけるコンセンサスアルゴリズムの役割の探索
この記事では、信頼性、データの一貫性、および耐障害性を確保する責任を負う人々の重要性と役割について探求します
この中国のAI研究は「Consistent4D」を紹介します:未キャリブレーションの単眼映像から4Dダイナミックオブジェクトを生成するための新しい人工知能手法
コンピュータビジョンの領域は、視覚的な入力から動的な3Dデータを解読するという基礎的で困難な課題に取り組んでいます。この能力は、デジタルコンテンツの制作、自律型車両のシミュレーション、医療画像の解析など、さまざまなアプリケーションにおいて重要です。しかし、一つの単眼のビデオ観察からこのような情報を抽出することは、動的な3D信号の複雑な性質のために困難な課題です。 移動オブジェクトを再構築するための既存の多くの手法は、入力として同期したマルチビュー映像が必要であり、カメラをテレポートするなどの手法や準静的なシーンを使用した、効果的なマルチビューキューが豊富なトレーニングデータを前提としています。それにもかかわらず、これらの手法は、カメラレンズによってキャプチャされないシーンの要素を正確に再構築する際に困難に直面します。さらに、同期したカメラセットアップと正確なキャリブレーションに依存することは、これらの手法の現実世界での実用性を制限します。 CASIA、南京大学、および復旦大学による新しい研究は、2Dソースから4Dコンテンツを生成するために設計された画期的な方法であるConsistent 4Dを紹介しています。この手法は、テキストから3Dへの最近の進歩と画像から3Dへの技術向上を参考にしており、テール型のCascade DyNeRFを利用して動くオブジェクトを視覚化し、同時に事前トレーニングされた2D拡散モデルを使用してDyNeRFの最適化プロセスを制御します。 その論文の中で述べられているように、主な課題は時間的な一貫性と空間的な一貫性の両方を保持することです。この課題に対処するために、研究者はトレーニングされたビデオ補間モデルに依存するインターポレーション駆動型の一貫性ロス(ICL)を使用し、空間と時間の両方にわたる一貫した監視信号の生成を可能にしています。特に、ICLロスの導入により、4D開発の信頼性が向上するだけでなく、3Dクリエーションにおける一般的な問題を軽減することができます。さらに、彼らは動的なNeRF生成ビデオを後処理するために、シンプルなビデオエンハンサーでトレーニングを行います。 綿密なテストによる励ましの結果は、合成および実際のインターネットビデオの両方を含む、ビデオから4Dへの創造の未開拓の領域での有望な進展を示しています。
Amazon ComprehendとLangChainを使用して、生成型AIアプリケーションの信頼性と安全性を構築しましょう
私たちは、産業全体で生成型AIアプリケーションを動かすための大規模言語モデル(LLM)の活用が急速に増加していることを目撃していますLLMsは、創造的なコンテンツの生成、チャットボットを介した問い合わせへの回答、コードの生成など、さまざまなタスクをこなすことができますLLMsを活用してアプリケーションを動かす組織は、ジェネラティブAIアプリケーション内の信頼性と安全性を確保するために、データプライバシーについてますます注意を払っていますこれには、顧客の個人情報(PII)データを適切に処理することが含まれますまた、不適切で危険なコンテンツがLLMsに拡散されないように防止し、LLMsによって生成されたデータが同じ原則に従っているかどうかを確認することも含まれますこの記事では、Amazon Comprehendによって可能になる新機能について議論し、データプライバシー、コンテンツの安全性、既存のジェネラティブAIアプリケーションにおける迅速な安全性を確保するためのシームレスな統合を紹介します
エンタープライズデータの力を活用するための生成AI:Amazon Kendra、LangChain、および大規模言語モデルによる洞察
広範な知識を持つ大規模言語モデル(LLM)は、ほぼあらゆるトピックについて人間らしいテキストを生成することができますしかし、大量のデータセットでの訓練は、専門的なタスクに対しての利用価値を制限します継続的な学習がなければ、これらのモデルは初期の訓練後に現れる新しいデータやトレンドに無関心ですさらに、新しいLLMを訓練するためのコストも[…]
「初めに、AWS上でMONAI Deployを使用して医療画像AI推論パイプラインを構築しましょう!」
この記事では、MONAI Deploy App SDKで構築されたアプリケーションに再利用可能なMAPコネクタを作成する方法を紹介しますこれにより、クラウドネイティブなDICOMストアから医療画像AIのワークロードへの画像データの取得を統合し、高速化することができますMONAI Deploy SDKは、病院の運用をサポートするために使用することができますさらに、MAP AIアプリケーションをSageMakerでスケールアップするための2つのホスティングオプションもデモンストレーションします
「VSCodeをDatabricksと統合して、データエンジニアリングのパイプラインとモデルを構築および実行する」
「データブリックスクラスタを使用して、ローカルでデータエンジニアリングパイプラインと機械学習モデルを開発しますVSCodeとDatabricksを統合して、よりスムーズな開発を実現します」
「AWS 研究者がジェミニを紹介:大規模な深層学習トレーニングにおける画期的な高速障害回復」
ライス大学とAmazon Web Servicesの研究者チームが、GEMINIと呼ばれる分散トレーニングシステムを開発しました。このシステムは、大規模な機械学習モデルのトレーニングにおける障害復旧を改善することを目指しています。このシステムは、チェックポイントにCPUメモリを使用することにより、高い可用性を確保し、トレーニングの妨げを最小限に抑えるという課題に取り組んでいます。GEMINIは既存の解決策に比べて大幅な改善を示しており、大規模なディープラーニングモデルのトレーニングにおける有望な進歩となっています。 GEMINIは、大規模モデルのトレーニングにおける障害復旧プロセスの改善を目指して分散トレーニングシステムを導入しました。以前の解決策は、帯域幅とストレージの制約によりチェックポイントの頻度とモデルの精度に影響を与えていました。しかし、PyTorchやTensorFlowなどのディープラーニングフレームワークが提供するチェックポイントインターフェースを使用しても、それらの制約が存在しました。GEMINIのアプローチは、チェックポイントの配置とトラフィックスケジュールを最適化することで、この分野での貴重な進歩となっています。 特に大規模なディープラーニングモデルのトレーニングは、その複雑さと時間の消費のために改善が必要であると認識されています。大規模モデルのトレーニングにおける障害復旧の現行の解決策は、リモートストレージの帯域幅の制約により、著しい障害復旧コストが発生します。GEMINIは、迅速な障害復旧を可能にする革新的なCPUメモリテクニックを導入しています。GEMINIの最適なチェックポイントの配置戦略とトラフィックスケジューリングアルゴリズムにより、既存の解決策よりも著しく速い障害復旧が実現されています。GEMINIは、ディープラーニングの研究領域において注目すべき貢献をしています。 GEMINIはDeep-Speed上に構築されており、分散トレーニングのためのZeRO-3設定が使用されます。GPUモデルの状態管理にはAmazon EC2 Auto Scaling Groupsが使用されています。チェックポイントはCPUメモリとリモートストレージに保存され、3時間ごとにチェックポイントが行われます。GEMINIは、ほぼ最適なチェックポイント配置戦略を採用し、干渉を減らすトラフィックスケジューリングアルゴリズムを使用しています。評価はNVIDIA GPU上で行われますが、AWS Trainiumなどの他のアクセラレータにも適用されます。 GEMINIは既存の解決策を13倍以上も上回る障害復旧の改善を実現しています。評価結果は、トレーニングスループットに影響を与えることなく、時間の浪費を減らす効果を証明しています。GEMINIの拡張性は、さまざまな障害頻度やトレーニングスケールにわたって示されており、大規模な分散トレーニングの可能性を示しています。GEMINIのトラフィック交錯アルゴリズムは、トレーニングスループットに肯定的な影響を与え、システムの効率をさらに向上させています。 大規模なモデルのトレーニングにおける障害復旧の既存の解決策は、リモートストレージの帯域幅の制約により、高いチェックポイントの頻度を設定することができず、著しい時間の浪費が生じています。この研究は、静的かつ同期的なトレーニングと固定の計算リソースに焦点を当てており、弾力的かつ非同期的なトレーニングメソッドを考慮していません。また、障害復旧以外の目的でチェックポイント履歴を保存するためのCPUメモリサイズの問題は、現在の研究では取り上げられていません。 GEMINIは、高速かつ信頼性のある障害復旧を提供する効率的でスケーラブルな分散トレーニングシステムです。CPUメモリへのチェックポイント保存と先進的な配置戦略により、高いチェックポイントの頻度を実現しています。これにより、トレーニングスループットに影響を与えることなく時間の浪費を減らすことができ、GPUクラスタ上の大規模な分散トレーニングに優れた解決策となっています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.