Learn more about Search Results 使用方法 - Page 8
- You may be interested
- 「思考の連鎖を自動化する:AIが自身に推...
- サムスンはAIとビッグデータを採用し、チ...
- EAGLEをご紹介します:圧縮に基づく高速LL...
- 「ポッドキャスティングのためのトップAI...
- ビンガムトン大学の研究者たちは、社会的...
- 再抽出を用いた統計的実験
- MailchimpにおけるMLプラットフォーム構築...
- PythonでのChatGPT統合:AI会話の力を解き...
- 「セールスとマーケティングのためのトッ...
- ~自分自身を~ 繰り返さない
- 「効率的な変数選択のための新しいアルゴ...
- LLMsにおけるブラックボックスの問題:課...
- 「アレクサ、学生たちは A.I. について何...
- 「量子飛躍:UCCの研究者が量子コンピュー...
- UCバークレーの研究者たちは、FastRLAPを...
「Anthropic Releases Claude 2.1:拡張されたコンテキストウィンドウと向上した精度でエンタープライズAIを革新する」
“` <img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/11/Screenshot-2023-11-27-at-11.32.43-PM-1024×951.png”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/11/Screenshot-2023-11-27-at-11.32.43-PM-150×150.png”/> <p>様々なAIモデルが存在しますが、最近AnthropicによってリリースされたClaude 2.1は、いくつかの現在の問題に対処しています。これまでのモデルとは異なり、このモデルは驚異的な20万トークンのコンテキストウィンドウを持ち、広範な文書から情報を理解し記憶することができます。これにより他のモデルを上回り、誤った応答の発生可能性を低減させます。さらに、Claude 2.1は外部ツールの使用が可能であり、クエリの効果的な処理能力を向上させる多機能性を持っています。計算機のデータベースと統合し、ウェブ検索を行うこともでき、さまざまな分野に応用が広がります。</p> <p>Claude 2.1の注目すべき追加機能の1つは、システムプロンプトの実装です。この機能により、ユーザーはリクエストの特定の文脈を設定でき、モデルからより構造化された一貫性のある応答を得ることができます。コストはアクセス可能なものに設定されており、開発者やビジネスを含む多くのユーザーにとって実現可能です。しかし、ユーザーレビューは肯定的な意見と否定的な意見が混在していることを示しています。一部のユーザーは、特にチャットや要約などのタスクにおけるClaude 2.1の能力に感謝していますが、特定のコンテンツの扱いにおける重い検閲や制限に対して苛立ちを表明しています。</p> <p>このモデルは、特に一番上と一番下の文書内の事実を驚異的な能力で回想しました。しかし、文書の深さが増すにつれて、一番下のパフォーマンスが低下していきました。特に最上部と最下部のポイントはほぼ100%の正確さで回想されました。低いコンテキスト長でのパフォーマンスは保証されていないため、ユーザーは最適な使用方法が必要です。</p> <p>結論として、AnthropicのClaude 2.1は、AI言語モデルにおけるユーザーの課題への有望な解決策を提供しています。強化されたコンテキストウィンドウ、ツール活用能力、システムプロンプトを通じた構造化された応答を通じて、より信頼性の高い、多様性のある経験を提供することを目指しています。ユーザーフィードバックは肯定的な側面と否定的な側面を強調していますが、モデルのメトリックは広範な文書からの情報の回想能力を示しています。Claude 2.1のようなソリューションはユーザーの懸念を解消し、AIの相互作用の経験を向上させます。</p> <p>この記事は<a href=”https://www.voagi.com/amazon-to-invest-up-to-4-billion-into-ai-startup-anthropic.html”>Anthropic Releases Claude 2.1: Revolutionizing Enterprise AI…
「Amazon SageMaker Canvasを使用したノーコードでSalesforce Data CloudでのMLの民主化」
この記事はSalesforce Einstein AIの製品ディレクターであるダリル・マーティスと共同執筆ですこれはSalesforce Data CloudとAmazon SageMakerの統合について議論するシリーズの3回目の投稿ですパート1とパート2では、Salesforce Data CloudとEinstein StudioのSageMakerとの統合によって、企業が自分たちのデータにアクセスすることができる方法を示しています
新しいAmazon SageMakerコンテナでLLMの推論パフォーマンスを強化する
今日、Amazon SageMakerは、大規模モデル推論(LMI)Deep Learning Containers(DLCs)の新バージョン(0.25.0)をリリースし、NVIDIAのTensorRT-LLMライブラリのサポートを追加しましたこれらのアップグレードにより、SageMaker上で最先端のツールを簡単に使用して大規模言語モデル(LLMs)を最適化し、価格パフォーマンスの利点を得ることができます - Amazon SageMaker LMI TensorRT-LLM DLCは、レイテンシを33%削減します[...]
LMQL — 言語モデル用のSQL
「SQLについて聞いたことがあるか、あるいはスキルを習得したことがあるはずですSQL(Structured Query Language)はデータベースデータの操作に広く利用される宣言型言語です年次のStackOverflow調査によると...」
Amazon Transcribeは、100以上の言語に対応する新しいスピーチ基礎モデル搭載のASRシステムを発表しました
アマゾン・トランスクライブは、完全に管理された自動音声認識(ASR)サービスであり、アプリケーションに音声からテキストへの機能を追加することが簡単になります本日、私たちは次世代の数十億パラメータ音声基礎モデル駆動のシステムを発表し、自動音声認識を100以上の言語に拡張することをうれしく思いますこの記事では、いくつかの話題について説明します
中国のこのAI研究は、AIの幻覚を探求する:大型言語モデルにおける幻視に深く潜る
大型言語モデルは最近、自然言語処理におけるパラダイムの変化をもたらし、以前には考えられなかった言語の創造、理解、推論の進歩をもたらしました。しかし、LLMの急速な発展と共に共起する懸念すべき傾向は、信憑性があるように思える情報を誘発し、事実の裏付けがないというものです。現在の幻覚の定義は、それらが与えられたソースコンテンツに対して不合理であるかまたは不忠実であると説明しており、以前の研究と一致しています。元の素材との不一致の程度に基づいて、これらの幻覚は内在的な幻覚と外在的な幻覚のカテゴリーにさらに分けられます。 タスク固有のバリアントが存在しますが、このカテゴリはいくつかの自然言語生成の仕事で共有されています。タスク固有のモデルと比較して、LLMはその優れた適応性と優れた性能のため、特にオープンドメインの応用において、幻覚を引き起こす可能性が高いです。LLM内では、幻覚は事実の不正確さに主眼を置いたより広範かつ包括的な概念であり、その幻覚タクソノミーはLLMの進化に合わせて関連性と柔軟性を向上させるために修正する必要があります。中国の哈爾滨工业大学と Huawei の研究チームがこの研究で幻想的なタクソノミーを再分類し、LLMの応用により専門化された基盤を提供しています。 彼らは幻覚を主に2つのカテゴリに分けています:忠実度幻覚と事実性幻覚。事実性の幻覚では、作成されたコンテンツと検証された現実世界の事実との違いに重点が置かれます;これらの違いは通常、でっち上げや事実の不一致として現れます。例えば、図1に示すように、月に初めて足を踏み入れた人物に関する質問に対して、モデルは1951年にチャールズ・リンドバーグがそうしたと自信を持って回答するでしょう。しかし、1969年のアポロ11号のミッションにより、ニール・アームストロングが初めて月に足を踏み入れました。一方、「信頼性の幻想」は生成されたコンテンツがユーザーの指示や入力の文脈からの不一致や離反を表す用語です。 図1に見られるように、ニュースストーリーを説明するように求められた際にイスラエルとハマスの対立に関する出来事の日付を間違ってしまい、2023年10月を2006年10月と誤解するモデルが生成しました。彼らはまた、事実性を検証可能なソースの存在に応じて、事実の不一致と事実のでっち上げの2つのサブカテゴリに細分化しています。彼らはユーザーの視点から不一致を解消することに重点を置き、論理的な、文脈的な、指示的な不一致に分類しています。これにより、現在のLLMの使用方法により一致するようになりました。これはNLGのタスクの文脈で調査されてきましたが、幻覚の根本的な原因は最新のLLMにとって特別な困難をもたらし、さらなる研究が必要です。 図1:LLMの幻覚を自然な形で示したイラスト 彼らの徹底的な調査は、LLMにおける幻覚の特定の原因に焦点を当てており、トレーニングやデータから推論フェーズまで、幅広い関連要素を扱っています。この枠組みの中で、不十分なソースや未活用のリソース、不十分なトレーニング戦略による事前トレーニングやアライメントの幻覚、および推論中の確率的デコーディング手法や不正確な表現に起因する幻覚など、データ関連の原因が考えられます。 さらに、彼らはLLMにおける幻覚を特定するための効率的な検出技術の詳細な説明と、LLMの幻覚の度合いを評価するためのベンチマークの包括的な概要を提供しています。また、幻覚の認識源を軽減するために設計された徹底的な戦術も提供しています。彼らは、この研究がLLMの分野をさらに発展させ、LLMの幻覚に関連する潜在的な利点と困難についての洞察を提供することを期待しています。この調査により、既存のLLMの欠点に対する理解が改善され、さらなる研究とより信頼性のある強力なLLMの作成に向けた重要な方向性も提供されます。
エラスティックサーチでシノニムを便利に更新するためにSynonyms APIを使用してください
Elasticsearchのシノニム機能は非常に強力であり、適切に使用すれば検索エンジンの効率を大幅に向上させることができますシノニム機能を使用する際の一般的な問題は、更新することです
「CNN(畳み込みニューラルネットワーク)におけるポイントワイズ畳み込みの探求:全結合層の置き換え」
はじめに 畳み込みニューラルネットワーク(CNN)は、画像とパターンを理解する上で重要な役割を果たし、深層学習の世界を変えました。この旅は、YanがLeNetアーキテクチャを紹介したころから始まり、今日ではさまざまなCNNを選択できます。従来、これらのネットワークは、特に異なるカテゴリに分類する場合には、全結合層に依存していました。しかし、そこに変化の風が吹いています。私たちは異なるアーキテクチャを探求しており、畳み込みニューラルネットワークにおける新しい方法であるPointwise Convolutionを使用しています。まるで新しい道を進むような感覚です。このアプローチは、通常の全結合層の使用方法に挑戦し、ネットワークをよりスマートで高速にするいくつかのクールな利点をもたらします。私たちと一緒にこの探求に参加し、Pointwise Convolutionの理解に深入りし、ネットワークの効率的な動作と優れたパフォーマンスの向上がいかに役立つかを発見しましょう。 学習目標 LeNetなどの初期モデルから現在使用されている多様なアーキテクチャまで、畳み込みニューラルネットワーク(CNN)の歴史を理解する CNNにおける従来の全結合層に関連する計算の重さと空間情報の損失について探求する Pointwise Convolutionの効率的な特徴抽出方法を探求する ネットワークの変更やハイパーパラメータのチューニングなど、CNNにおけるPointwise Convolutionの実装に必要な実践的なスキルを開発する この記事はデータサイエンスブログマラソンの一環として公開されました。 全結合層の理解 従来の畳み込みニューラルネットワーク(CNN)では、全結合層は重要な役割を果たし、ある層のすべてのニューロンを次の層のすべてのニューロンに接続する密な相互接続構造を形成しています。これらの層は、画像分類などのタスクで使用され、ネットワークが特定の特徴と特定のクラスを関連付けることを学習します。 要点 グローバルコネクティビティ:全結合層はグローバルな接続を作成し、ある層の各ニューロンが次の層のすべてのニューロンに接続されることを可能にします。 パラメータの重さ:全結合層には非常に多くのパラメータが含まれるため、モデルのパラメータ数が大幅に増加することがあります。 空間情報の損失:全結合層に入力データを平坦化することで、元の画像から空間情報が失われる場合があり、特定のアプリケーションで欠点となる可能性があります。 計算の重さ:全結合層に関連する計算負荷は、ネットワークの規模が拡大するにつれて特に大きくなる場合があります。 実践における使用法 畳み込み層の後:全結合層は通常、畳み込み層の後に使用されます。畳み込み層は入力データから特徴を抽出します。 密な層:一部の場合、全結合層は「密な」層と呼ばれ、すべてのニューロンを接続する役割が強調されます。 変更の必要性とは? 通常の畳み込みニューラルネットワーク(CNN)における全結合層の基本的な理解ができたので、なぜ一部の人々が異なるものを探しているのかについて話しましょう。全結合層は役割を果たしていますが、いくつかの課題を抱えています。コンピューターに負荷がかかり、多くのパラメータを使用し、時には画像から重要な詳細を失うことがあります。…
このAI論文は、オープンソースライブラリの既存の機能を最大限に活用するために開発された新しい人工知能アプローチ、ML-BENCHを提案しています
LLMモデルは、さまざまなプログラミング関連の活動を実行できる強力な言語エージェントとして、ますます展開されています。これらの驚異的な進展にもかかわらず、静的な実験環境でこれらのモデルが示した能力と、実際のプログラミングシナリオの絶えず変化する要求との間には、相当な隔たりがあります。 標準のコード生成ベンチマークは、LLMがゼロから新しいコードを生成する能力をテストします。しかし、プログラミングの慣行は滅多にすべてのコードコンポーネントをゼロから生成する必要はありません。 実世界のアプリケーションのコードを書く際には、既存の公開されているライブラリを使用することが一般的な慣習です。これらの開発済みライブラリは、さまざまな課題に対する堅牢で実践済みの回答を提供します。そのため、コードLLMの成功は、機能の生成だけでなく、正しいパラメータの使用方法でオープンソースライブラリから派生したコードの実行能力など、さまざまな方法で評価されるべきです。 イェール大学、南京大学、北京大学の新しい研究では、ML-BENCHという現実的で包括的なベンチマークデータセットを提案しています。このデータセットは、LLMの利用者の指示を理解し、GitHubのリポジトリをナビゲートし、実行可能なコードを生成する能力を評価するものです。ML-BENCHは、指示の要件を満たす高品質で指示可能な正解コードを提供しています。ML-BENCHは、130のタスクと14の人気のある機械学習のGitHubリポジトリからなる9,444の例を含んでいます。 研究者たちは、Pass@kとParameter Hit Precisionを調査の指標として使用しています。これらのツールを使用して、彼らはGPT-3.5-16k、GPT-4-32k、Claude 2、およびCodeLlamaがML-BENCH環境での能力を探求します。ML-BENCHはLLMのための新しいテストを提案しています。経験的な結果は、GPTモデルとClaude 2がCodeLlamaを大きく上回っていることを示しています。GPT-4は他のLLMよりも明らかに性能が向上していますが、実験でのタスクのうち39.73%しか完了していません。他のよく知られたLLMは幻覚を経験し、期待通りの成果を上げていません。調査の結果からは、LLMはコードの記述だけでなく、長いドキュメンテーションの理解も必要としていることが示唆されています。その主要な技術的貢献は、彼らのエラー分析を通じて発見された不足点に対処するために設計された自律型の言語エージェントであるML-AGENTの提案です。これらのエージェントは、人間の言語と指示を理解し、効率的なコードを生成し、困難なタスクを遂行する能力を持っています。 ML-BenchとML-Agentは、自動化された機械学習プロセスの最先端の進歩を表しています。研究者たちは、この成果が他の研究者や実務家にも興味を持ってもらえることを期待しています。
ネットワークグラフを視覚化するための最高の新しいPythonパッケージ
この記事では、私が偶然出会ったPythonパッケージを紹介します私の謙虚な意見ですが、これは今まで見た中で最高のネットワークグラフの視覚化ツールですデータに詳しい読者の方々にとって…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.